Archivo de la categoría: analitica

4 Metodologías para proyectos de Data Science – Datlas Research

Datlas_quote1_Method

Métodos, métodos y  más métodos. Aunque parecer que en el largo plazo limitan nuestra imaginación son herramientas que facilitan la entrada, práctica y control en un campo de dominio que queremos alcanzar. Desde Datlas, nuestra startup de analytics, hemos trabajado con “métodos de data science” en nuestros proyectos internos, aún sin tener usuarios. Ahora que los tenemos les puedo confirmar que el método es uno de los recursos más importante para establecer claridad en la comunicación y avances de los proyectos. En esta columna expondremos 3 de los métodos más usados en proyectos de ciencia de datos. Al final también integraremos nuestra propia versión de método de trabajo.

Datlas_barra_suscribir

1) KDD (Knowledge Discovery in Databases)

Datlas_KDD

Metodología de 5 pasos. Inicia con la selección donde de un data set principal hay que selecciónar un subconjunto de variables que nos pueden apoyar en la exploración del fenómeno que estamos estudianto. En el pre-procesamiento realizamos la limpieza y balanceo de datos. En la transformación, el método sugiere que reduzcamos dimensiones con técnicas estadísticas para manejar la menor cantidad de variables necesarias. En minería de datos buscamos patrones de interés o representativos en relación al objetivo de la minería de datos. Finalmente para colarnos al conocimiento pasamos por el proceso de intepretación y evaluación de modelo.  Al final de la iteración se le otorga una calificación al modelo y si no se cumplieron satisfactoriamente los objetivos se repite hasta que sean logrados.

2) SEMMA (Sample, Explore, Modify, Model and Access)

Datlas_SEMMA

En esta metodología iniciamos con “sample” o un muestro de la base de datos principal (que asumimos que es muy pesada y lenta de procesar) para poder hacer manipulaciones sobre este pequeño set de una manera ágil. Después exploramos los datos para ganar entendimiento e ideas, así como refinir nuestro proceso de búsqueda de anomalías, patrones y tendencias. Llegamos entonces al paso de modificar donde nos enfocamos en crear, seleccionar y transformar variables para enfocarnos en un proceso de selección. En esta etapa también se buscan anomalías y reducir el número de variables. Luego sigue la etapa de modelaje en donde debemos aplicar distintos métodos estadísticos evaluando sus fortalezas y cumplimiento de objetivos. Finalmente la etapa de “access” que significa evaluar la confiabilidad y utilidad de los hallazgos. Se evalúa particularmente el “performance”.

De la misma manera del modelo anterior, si no se logran los objetivos en una primera iteración tendremos que repetir el proceso.

 

3) CRIPS-DM (Cross-Industry Standard Process for Data Mining)

Datlas_CRISPDM

Seguimos con el “famosisimo” CRIPS-DM, el método más usado en la industria y es que IBM, la compañía dueña de Watson que antes desarrollaba poderosas computadoras, es quien desarrolló este modelo. La diferencia clave es que cualquier etapa del modele puede tener retorno o iniciar una reversa al método. Si durante la etapa en particular el especialista encontró que los datos no son suficientes para resolver su objetivo, puede regresar a cualquiera de la otras etapas.

En la etapa de “Entendimiento de negocio” primero se determinan los objetivos de negocio: Antecedentes, objetivos estratégicos de impacto y criterios de éxito. Después revisamos la situación, inventariamos recursos, realizamos un análisis de costo-beneficio, determinamos objetivos y producimos un plan de proyecto.

En “Data Understanding” es donde recolectamos los datos iniciales, describimos cada uno de estos datos, exploramos y verificamos la calidad de la información.

En “Data preparation” seleccionamos la información más razonable, la limpiamos, construimos variables de ser necesario, integramos datos y finalmente formateamos. El entregable de esta etapa sería un dataset listo para trabajar.

Para la etapa de “Modeling”, similar a los otros modelos, experimentamos con distintas técnicas, consideramos supuestos, hacemos pruebas, definimos parámetros y revisamos funcionalidad general de los modelos.

En “Evaluación” es donde considerando los criterios de éxito definidos consideramos como positiva y/o negativa la evaluación. Aqui mismo definimos los siguientes pasos y tomamos las decisiones necesarias.

Finalmente en “Deployment”, esta etapa sólo se activa si el proyecto tuvo evaluación positiva. Se genera entonces un plan de desarrollo, un plan de mantenimiento, se genera un reporte final y presentación para socializar el caso de estudio.

Comparando métodos

Datlas_comparando_metodos_DS_

A manera personal pienso que el CRIPS-DM se lleva de calle los métodos de antes. Por algo es más usado el CRIPS-DM y principalmente porque mezcló la necesidad de entendimiento del negocio con la parte científica del desarrollo de análisis de datos.

Datlas_barra_suscribir

4 ¿Cómo lo trabajamos en Datlas?

Datlas_metodo_laboratoriodedatos

Nuestro método, titulado “Laboratorio de Datos”, es similar a los modelos revisados con anterioridad. Tras un entendimiento central de negocio (En donde se ubica la imagen de nuestro mapa en el diagrama superior) entendemos las necesidades del negocio, dimensionamos el proyecto y seleccionamos los métodos experimentales. Ese entendimiento no necesariamente te tiene que llevar a la extracción de datos, ya que puede haber un avance previo. Sobre todo nosotros que trabajamos con datos de clientes, en muchas de las ocasiones llegamos a integrar o clasificar.

Asumiendo que sea un proyecto tradicional, iniciamos en la etapa de extracción donde dimensionamos y entendemos el tipo de variables con las que vamos a trabajar. En nuestro caso generamos un glosario de variables- Para la integración y clasificación buscamos ir preparando un ambiente de trabajo que nos permita geo-referenciar y mapear variables. Si estos 3 pasos iniciales cuentan con una evaluación positiva podemos pasar a la etapa de visualizar o reportar.  Cuyo objetivo principal es generar los principales recursos para socializar y pedir retroalimentación a los usuarios potenciales. Tras realizar los ajustes necesarios podremos llegar a entrenar un modelo con técnicas de inteligencia artificial.  Los pasos en el método son iterativos y se puede regresar a cualquier paso una vez que el entendimiento central del negocio se va enriqueciendo con cada etapa del proceso.

Para más detalle de este método puedes solicitar una conferencia o sesión de capacitación en direccion@datlas.mx

**También te puede interesar: ¿Cómo aprender ciencia de datos? 6 pasos

Datlas_quote2_Method

Hasta aqui la columna de hoy.  ¿Cuál es tu método y como darle libertad a la creatividad en el proceso? ¿Cuál seleccionarás para tu siguiente proyecto?  Comparte con tus colegas y comenta qué crees que podría mejorar los métodos de ciencia de datos.

Equipo Datlas MX

-Keep it weird-

 

 

 

¿Cómo encontrar clientes potenciales usando mapas? – Datlas Caso de Uso

Hace un par de años cuando le contábamos a la gente que hacíamos análisis de datos con mapas se nos quedaban viendo extrañados. Y es que la historia nos enseñó que el uso común de los mapas era para navegación, establecer rutas, indicar direcciones. Pero hoy en día la disponibilidad de datos geo referenciados (asociados a un punto geográfico, un punto en el mapa) nos ha permitido utilizar los mapas para realizar análisis más complejos, incluso de variables ajenas a temas de tráfico y navegación. En esta columna te vamos a explicar cómo puedes utilizar el mapa Premium de Datlas para encontrar nuevos prospectos, justo como lo han hecho nuestros clientes. Quédate hasta el final y obtén una sorpresa que te ayudará a adquirir tu licencia premium de inmediato e iniciar hoy mismo a prospectar nuevos clientes potenciales.

free_Suscriber

El proceso es muy sencillo, no importa si vendes productos o prestas servicios, el paso #1 es: la delimitación geográfica. Estamos seguros de que tu producto es único y tu servicio es inigualable, que pronto todo el mundo se va a pelear por adquirirlo, pero analizar todo un continente o un país te puede provocar dolores de cabeza. Es por ello que en DATLAS hemos dividido nuestros mapas por estados. Por lo tanto, debes elegir el estado en el que se encuentra la zona donde te quieres enfocar para encontrar a tus prospectos. Para ejemplificarlo de forma sencilla usaremos el caso de Carolina, una joven que vende repostería a través de redes sociales, principalmente en Monterrey. Ella estaba buscando expandir su mercado y comenzar a vender en San Pedro Garza García. Por lo tanto, la plataforma que vamos a utilizar para este ejercicio será el Mapa Premium del estado de Nuevo León, disponible en nuestro Marketplace.

datlas_marketplace_mapa_premium_NL

Una vez definida la geografía que vas a analizar, el paso #2 es: definir el perfil de tu cliente objetivo (o mercado meta). Si eres dueño o parte de una organización que tiene años operando, será mucho más sencillo ya que conoces las características generales de tus clientes actuales y con ello puedes establecer un perfil con ciertos atributos a buscar. Por otro lado, si eres un emprendedor que está iniciando su negocio definir el perfil del cliente objetivo será un ejercicio distinto, basado en el problema que resuelves y el tipo de solución que has diseñado. Para el caso de Carolina ella definió a su cliente objetivo como: mujeres entre los 24 y 31 años de edad, con estudios universitarios o superiores, que tuvieran una capacidad de pago de $1,000 MXN o más.

datlas_mkdo_meta_perfil

Una vez definida la geografía de enfoque y el perfil de cliente que buscas es momento de entrar en la plataforma. Si has tenido la oportunidad de probar nuestro DEMO seguro sabrás como navegar y que atributos están disponibles, si no es así te invitamos a suscribirte para tener conocimiento de algunas de las variables y herramientas que estaremos comentando.

Una vez dentro de la plataforma fácilmente podrás reconocer que los polígonos que aparecen al inicio son interactivos y que al dar click en ellos se revela un pop-up del lado izquierdo con alguna información relevante. Y es justo ahí en donde podrás encontrar la información demográfica y socioeconómica que en este caso Carolina estaba buscando.

datlas_mapa_premium_nl_popup_poligono

Ahora bien, ya identificaste donde está la información ¿qué sigue? ¿checar uno por uno todos los polígonos? ¡Por supuesto que no! para eso hemos habilitado la herramienta llamada búsqueda específica que se encuentra justo en la barra lateral derecha. Esta herramienta te permite establecer un área dentro del mapa y buscar aquellos polígonos que cuenten con características específicas, como por ejemplo mujeres de 24 a 31 años.

datlas_mapa_premium_nl_busqueda_especifica

Una vez identificada la herramienta el siguiente paso es establecer los criterios de búsqueda. En este caso podrás observar que los rangos de búsqueda para variables como “Mujeres” (cantidad de mujeres) desde 0 hasta un máximo (ej: 1547). En el caso de Carolina, podemos hacer un cálculo simple para establecer la cantidad de mujeres que necesitaría encontrar: si Caro quisiera atender 3 bodas cada fin de semana del mes estaría buscando generar 12 clientas. Si su porcentaje de conversión es del 10% eso quiere decir que debe estar buscando una zona con 120 clientas potenciales (prospectos). Siendo así el criterio de búsqueda para el tema de mujeres debería tener como mínimo 120.

Ahora bien, Caro no solo busca mujeres, sino mujeres de cierta edad, así que el segundo paso sería establecer un rango para las edades de 25 a 31. Es importante notar que los datos de edades son agregados, es decir, contemplan tanto a hombres como mujeres por lo que un cálculo simple pudiera ser el siguiente: navegando en la plataforma notamos que la mayoría de las veces la proporcionalidad de hombres y mujeres es de alrededor de 50-50% por lo tanto, usando esta simple regla de dedo, si queremos encontrar 120 mujeres y el rango de edades contempla hombres y mujeres, pudiéramos establecer un mínimo de 240 para la variable de edad de 25 a 31.

Finalmente, Caro buscaba que tuvieran una capacidad de pago de $5,000 MXN o más. Aquí es importante contextualizar. El dato socioeconómico que manejamos es el de ingreso promedio, por lo tanto, si buscamos que sean personas dispuestas a gastar $5,000 MXN en su organización de bodas habría que buscar que su ingreso promedio sea superior a esta cantidad. Para simplificar el ejercicio, en este caso, lo haremos buscando ingresos de $10,000 MXN o más.

El pase de diapositivas requiere JavaScript.

Finalmente, el resultado es muy simple: en color rojo verás todos aquellos polígonos dentro del área que has establecido, pero que no cumplen con los criterios de búsqueda. Por otro lado, los polígonos en color amarillo serán aquellos que cumplen con las características establecidas. De esta forma puedes identificar rápidamente las zonas en donde se encuentran tus prospectos. Con esto, Caro, tú y todos nuestros clientes pueden accionar campañas enfocadas, realizar trabajo en campo de una manera focalizada o muchas otras estrategias para capitalizar a ese mercado meta que ya has podido encontrar.

datlas_mapa_premium_nl_busqueda_especifica_resultado

Recuerda que esta es solo una de las multiples herramientas de análisis que integran nuestros mapas. Puedes combinar el uso de distintas herramientas para realizar análisis más complejos, comparar los resultados en distintas zonas y mucho más.

Puedes probar este ejercicio y todos los demás detalles suscribiéndote en nuestra pagina y probando la versión DEMO.

Si crees que ya estas listo para ponerte manos a la obra y captar más prospectos puedes ir directamente a nuestro Marketplace y aprovechar el código de descuento BLOG100 para obtener $100 MXN de regalo en tu primera compra de cualquiera de nuestros mapas Premium.

De esta manera concluimos el blog de hoy, mantente atento a todos los nuevos casos de uso, videos y nuevos lanzamientos que tendremos para ti.

Siguenos @DatlasMX

Evolución de Mancha Urbana en Nuevo León: Timelapse Satelital 1984 – 2019 – Datlas Research

Conforme crece la población mundial y los sistemas económicos más personas pasan de vivir de zonas rurales a zonas urbanas. En este fenómeno socieconómico han prosperado las megaciudades y la expansión de ciudades de manera acelerada. Recientemente la empresa Google liberó un proyecto llamado “Timelapse” dentro de “Google Earth Engine” que permite visualizar las fotografías satelitales históricas de coordenadas en todo el mundo. Increíbles visualizaciones sobre crecimientos de ciudades como Dubai y Tokio o desarrollo de países como Singapur o Corea del Sur pueden encontrarse en este ejemplo. Para esta columna exploramos el caso de Nuevo León, en México considerando imágenes de 1984, cuando había alrededor de 2.5 millones de habitantes en el Estado, hasta el 2019 con más de 5 millones de habitantes.

Estado de Nuevo León, México

En los últimos 35 años el Estado duplicó sus habitantes. La ciudad recién comienza a habilitar edificios estilo rascacielos y pequeñas torres de departamento. En general, los crecimientos que podemos detectar en las imágenes han sido hacia las áreas que hace 30 años eran rurales. Esto ha incrementado el tamaño de los municipios y generando zonas habitacionales lejos de los centros económicos de la ciudad. Es notorio que las distancias a los centros de trabajo son más largas, pero al mismo tiempo las nuevas colonias residenciales representan oportunidades asequibles para las personas que en los últimos 35 años han llegado a vivir al Estado o locales que han adquirido su propia vivienda.

Da click en el video para que veas la secuencia de imágenes satelitales.

Municipio de Santa Catarina – San Pedro Garza García

Algunos de los municipios con más dinamismo en estos años son Santa Catarina y San Pedro. El lado triste de la historia es que muchos de los pulmones o zonas verdes de estos municipios se han ido consumiendo poco a poco en el crecimiento de la ciudad. Danos tu opinión y velo con tus propios ojos.

Revisa el video en el 00:18 en adelante.

Huasteca, parque natural en Nuevo León

El parque natural de la Huasteca es una de las zonas donde más actividades de senderismo, escalada y recreación ocurren en el Estado. Esta región de la ciudad de Santa Catarina ha sido fuente de escándalos recientes ya que se están generando zonas comerciales en lo que se supone son zonas naturales protegidas ¿Qué opinas?

Revisa el video en el 00:26 en adelante.

 

Datlas_barra_suscribir

Cerro Topo Chico en Nuevo León

Otro de los ejemplos de cómo el crecimiento de la ciudad ha sido a costa de algunas de las zonas verdes del país se puede visualizar en la siguiente secuencia.

Revisa el video del 00:40 en adelante.

Estadio BBVA de fútbol en Nuevo León

Estas secuencias nos pueden ayudar a contar historias, tal es el caso de la urbanización y el desarrollo de la magno-obra del Estadio BBVA en Nuevo León.

Revisa el video del 00:48 en adelante.

Municipio de Apodaca

Finalmente repasaremos el caso completo de 2 municipios, el primero es el de Apodaca. Originalmente destacaba por su zona industrial, bodegas y el aeropuerto. Pero la cantidad de desarrollos habitacionales y comerciales ha prosperado y eso lo podemos notar desde esta secuencia.

Revisa el video del 00:33 en adelante

Municipio de García

El último municipio es el de García, el originario del Bronco (Gobernador del Estado), que en los últimos años completamente pasó de ser una zona verde a una zona en desarrollo. Podemos identificar cómo se generan los caminos y las rutas que conectan distintos poblados de García en esta secuencia.

Revisa el video del 00:65 en adelante.

Nosotros, desde Datlas, hemos capitalizado el valor de los mapas. Nos enfocamos a los tiempos más recientes y en nuestra plataforma mostramos más de 50 variables de cada coordenada en todo México.  Te invitamos a suscribirte a nuestro DEMO GRATIS y te dejamos un video para que la revises de primera mano.

 

Si te ha gustado la columna y sabes que le puede interesar a tus colegas no dudes en compartirla. Siguenos en redes sociales como @DatlasMX y comenta.

Saludos

Equipos Datlas

-Keep it weird-

Elaborado con la herramienta: https://earthengine.google.com/timelapse/

Dimensionando la industria de “Analítica de datos e Inteligencia Artificial” – Datlas Research

¿Cuántas empresas de analítica de datos existen? ¿En qué industrias están participando? ¿Quién está desarrollando Inteligencia Artificial? Hoy hablaremos del mapa de mercado desarrollado por “Firstmark”  (@matttruck). Desde Datlas, startup mexicana de analytics, dedicamos esta columna a profundizando en el dimensionamiento y la clasificación de la industria completa de analítica de datos e inteligencia artificial.

Mapa completo de industria al 2019

2019_Matt_Turck_Big_Data_Landscape_Final_Datlas
Descarga aqui: https://cloudup.com/ck5aIRPKNuU

Según el reporte podemos encontrar 7 industrias y 82 sub-industrias para la industria de “datos” (Analítica, big data e inteligencia artificial).  Ahora haremos un pequeño enfoque a cada una.

1) Infraestructura

Abrir una empresa de analítica de datos y de tecnología hace 20 años tenía como 80% del presupuesto dedicado a infraestructura. Comprar potentes procesadores y sobre todo capacidad de almacenaje físico. Sin embargo, en los últimos 10 años ha ido en incremento los oferentes de poder de cómputo distribuido y almacenaje por nube.

1_Infrastructure_Panorama_Datlas

2) Analítica y Machine Learning(ML)

¿Tableau? ¿Power BI? ¿Watson? la mayoría de sus servicios corporativos pertenecen a la vertical de la subindustria de analítica y ML.  En estas plataformas es posible encontrar soluciones para convertir datos en algoritmos o visualizaciones y así mismo en ventajas comparativas para una empresa.

2_Analytics_ML_Panorama_Datlas

3) Aplicaciones con enfoque a empresa

Hay otro segmento de soluciones prediseñadas donde participan las tecnologías de analítica de nicho. Soluciones para gobierno, industria inmobiliaria o financiera son alguno de los ejemplos de empresas que han generado soluciones tan específicas como para atender un nicho. Estas startups buscan como estrategia ser tan importante en la industria que se acerque algun gigante como IBM, Microsoft o Palantir para adquirir su participación en la industria.

3_Aplicaciones_Empresa_Panorama_Datlas

4) Analítica de infraestructura cruzada

Son compañías que desarrollan diversas plataformas suficientemente robustas como para adaptarse a distintas industrias. En su mayoría podemos entender estos desarrollo como empresas que buscan generar ecosistemas más que productos o servicios.

4_Infraestructura_Cruzada_Analytics_Panorama_Datlas

**Si te interesa conocer más de analítica de datos y Big data te invitamos a solicitar GRATIS el DATA PLAYBOOK Vol. II de DATLAS. Solicítalo aqui. **

Datlas_Playbook_prelaunch

5) Open source – Fuentes abiertas

Hay otro segmento de compañías, organizaciones y desarrolladores independientes que son fieles creyentes del “open source”. Esto hace referencia a los aplicativos que son gratuitos y mejorados por la comunidad que los utiliza. Aunque pareciera que no hay incentivos, casos de éxito como R, Hadoop o Linux , que son Open-source, son impulsores de cambios y mejoras en las industrias de manera significativa.

5_OpenSource_Panorama_Datlas

6) Fuentes de Datos y APIs

Los modelos de analítica y Big data requieren datos listos para ser consumidos. Es decir limpios, estructurados y actualizados. En este sentido hay una serie de empresas de fuentes de datos que se han encargado de desarrollar APIs o carreteras directas a fuentes de datos de valor.  Este es el caso, sobre todo, de aplicaciones móviles que recopilan datos de usuarios y como modelo de negocio comercializan esos datos.

6_RecursosdeDatos_Apis_Panorama_Datlas

Si quieres conocer más de este tema te puede interesar ¿Cómo funciona Location intelligence? el blog donde explicamos este tema a detalle

7) Más recursos de datos

Finalmente otros recursos de datos como las escuelas, incubadoras, centros de investigación o plataformas de retos de datos como Kaggle. Sin restarle importancia (Consideremos que Google ha adquirido un par de estas empresas), continua el incremento y las empresas que quieren ganar nombre desde verticales más tradicionales como consultoría, educación o desarrollo de patentes/algoritmos propietarios.

7_RecursosDatos_Panorama_Datlas

¿Qué opinas del tamaño de la industria? ¿Te imaginabas? Hasta aqui la columna de hoy si te gustó el contenido recuerda compartir y aprovecha nuestros descuentos en el MARKETPLACE DE DATLAS.

***BONUS 8 de Enero 2020*** CB Insights libera un reporte de Tendencias en Inteligencia Artificial donde estructuran las iniciativas de “Alphabet”. Parece que ellos están entendiendo como ir capturando la industria desde distintas empresas.

Alphabet_CB_Insights_KEY_AI_Initiatives_Google

 

Equipo Datlas

-Keep it weird-

 

 

 

 

¡NUEVO! Mapa Socios Datlas: Al servicio de agencias de investigación, firmas de consultoría y grandes corporativos.

Nuestra filosofía está basada en que, con la información y la tecnología adecuada, las personas podrán resolver problemas cada vez más complejos. Para mantenernos en sintonía con esta afirmación realizamos constantes esfuerzos en pro de los tres grandes pilares de nuestra empresa: la información, la tecnología y las personas. Durante los últimos años hemos realizado esfuerzos por integrar cada vez más y mejor información a nuestras soluciones, integrar lo mejor que hay en tecnología y finalmente, lo más importante, escuchar a las personas: nuestros clientes. Cada innovación que hemos realizado ha tomado en cuenta estos 3 pilares y es por ello que hoy nos complace presentarles nuestro más reciente lanzamiento: el Mapa Socios Datlas.

datlas_marketplace_socios_NL

Este nuevo modelo de licenciamiento nace a partir de nuestra relación con agencias de investigación y firmas de consultoría, entendiendo que hoy en día están teniendo su propia transformación digital, al igual que los negocios a los que les prestan servicios. El objetivo detrás de esta nueva herramienta es apoyarles a generar mayor valor a sus clientes. Quédate hasta el final y podrás ver el video de nuestro primer socio.

Pero ¿cómo es que estas agencias y consultoras han llegado hasta este punto? Hace falta entender un poco de historia, se las contamos en breve.

Para tomar una decisión basada en datos existe todo un proceso detrás que podemos simplificar en 5 etapas:

  1. Recolección de los datos
  2. Organización de los datos
  3. Análisis de los datos
  4. Generación de reportes de resultados
  5. Y, finalmente, la toma de decisiones

Esta claro que el valor agregado detrás de los servicios de las agencias y consultoras está en el análisis de la información, por lo que las etapas de recolección y organización de datos resultaban ser un “mal necesario” hace algún tiempo. Dado el contexto de los negocios y la estructura de estas organizaciones, generalmente delegaban este trabajo a un solo miembro de la organización por lo que estas etapas se volvían intensivas en consumo de tiempo y recursos.

datlas_proceso_tiempo

Conforme los negocios fueron evolucionando, comenzaron a exigir cada vez un menor tiempo de respuesta para estos servicios y las agencias y consultoras, muy acertadamente, comenzaron a distribuir el trabajo entre un equipo de personas, logrando beneficios directos.

Pero actualmente el contexto ha cambiado de una forma disruptiva. Hoy en día los negocios no solamente exigen una inmediatez en la respuesta sino una capitalización del valor que saben que esconden sus datos. Y es precisamente en este punto donde, en conjunto, hemos desarrollado una solución que permite a Datlas encargarse del trabajo duro de la recolección y organización de los datos, para que nuestros socios puedan enfocarse directamente y de lleno al análisis de la información y la derivación de accionables de valor.

datlas_proceso_tiempo_optimizado

De esta manera hemos logrado diseñar una plataforma completamente nueva que capitaliza la experiencia que hemos tenido en Datlas y fusiona los grandes conocimientos de estas agencias y firmas de consultoría, dotando a nuestros socios de toda la información de forma inmediata y también permitiéndoles integrar y personalizar capas de datos que ellos puedan manejar de sus clientes.

El pase de diapositivas requiere JavaScript.

Finalmente, te invitamos a escuchar de todos lo que puedes lograr como Socio Datlas desde la voz de nuestro primer socio:

datlas_mapa_socios_testimonio_KM_Galera

Si conoces a alguien que pudiera ser Socio Datlas o tienes alguna duda por favor escríbenos a direccion@datlas.mx y con gusto te apoyaremos. Con tu ayuda seguimos creciendo y generando mejores soluciones que nutran y hagan crecer el ecosistema digital de México.

Siguenos y mantenten al día con los nuevos lanzamientos

@DatlasMX

 

¿Cómo construir un CHECKLIST para iniciativas de analítica de datos? – Datlas research

Hace un par de blogs conversamos sobre cómo cerca del 70% de los proyectos de datos fracasan. Identificando el problema ¿No vendría bien una fórmula que reduzca este oportunidad de error? ¿Hay una receta? Pues la respuesta es sí y no es como la de la abuela, la receta del éxito en los datos no es ningún secreto. Tiene que ver con hábito, cultura y método. En esta columna profundizamos entre métodos que vienen de distintos ángulos: Academia, profesión, ciencia , entre otros para concretar un “listado” a estilo “checklist” de preparaciones para implementar un proyecto de analítica en una organización. Nosotros, desde Datlas, invitamos a las organizaciones a evaluar más de 100 puntos a la hora implementar nuestras tecnologías o cualquier tecnología de analítica. Para esta ocasión hicimos un resumen. Es importante aclarar que el sesgo de este escrito es hacia corporativos y empresas grandes, que tienen funciones repartidas en departamentos con responsabilidades específicas y la burocracia habitual de la estructura vertical de un gran negocio.

Datlas_barra_suscribir

I. Entendiendo el contexto

Datlas_checklist1

Ya hemos discutido antes en ¿Cómo ejecutar una estrategia de Big Data en mi organización? como el contexto y los objetivos tienen principal relevancia a la hora de llevar un proyecto de analítica. Sin embargo cuando la iniciativa de datos arranca desde una gran organización hay otros puntos a clarificar para aumentar las probabilidades de éxito de un proyecto de analítica. Todos ellos tienen que ver con entender el contexto.

Si pudiéramos enumerar 6 elementos importantes qué tomar en cuenta son: Estrategia, datos, analítica, implementación, mantenimiento o soporte y restricciones.

Datlas_Playbook_prelaunchEn general, entender el contexto con la profundidad adecuada nos habilita a tomar todas las precauciones necesarias a la hora de diseñar los presupuestos financieros, técnicos y temporales de un proyecto.  De manera errónea muchas organizaciones le dan el mismo trato a un proyecto de analítica que a un proyecto de TI (Como activar un nuevo punto de venta o implementar un nuevo equipo de hardware). Sin embargo la historia e investigaciones de los últimos 10 años nos vinculan a que los proyectos de analítica requieren equipos especializados y esto es debido a que tienen un “checklist” distinto.

 

*También te puede interesar: Los 5 perfiles para una estrategia de datos éxitosa en mi organización. Y tener nuestroData Playbook Vol. II” GRATIS antes que nadie.

II. Generando un checklist personalizado para proyectos de analítica

Hay un montón de literatura sobre este tipo de checklist, pero siguiendo nuestra fuente favorita de “Fast.ai” encontramos la siguiente estructura a la hora de hacer un checklist para proyectos de analítica. Integra 6 aspectos, pero agregaremos uno más y al final de la columna explicaremos porqué.

1) Aspectos Organizacionales

Datlas_checklist_organizacional

Debemos de iniciar cuidando los higiénicos, esto quiere decir los aspectos organizacionales que van en relación a las personas que llevarán a cabo la estrategia. La probabilidad de éxito en un proyecto de datos incrementa si se tienen métodos de trabajo en reclutamiento, ubicación de talento y medición de resultados. Estas 5 preguntas pueden servir de orientación.

2) Aspectos Estratégicos

Datlas_checklist_Estrategia

Una iniciativa de datos habilita un pronunciamiento estratégico de la compañía y no al revés. En este sentido los proyectos de big data e inteligencia artificial deben de responder y aportar a algunos de los objetivos estratégicos de la compañía. Sencillamente cada hora dedicada a junta, proyecto, investigación o desarrollo de un científico de datos deberá estar apuntando a cumplir un objetivo estratégico.

3) Datos

Datlas_checklist_data

El error común de las organizaciones es que inician por los datos, cuando en realidad previo a esto ya establecimos que deberían estar las personas, cultura y estrategia. Luego hay que invitar a los “técnicos” a participar en el checklist para validar el grado de factibilidad a la hora de consultar bases de datos específicas.

4) Capacidades analíticas

Datlas_checklist_analytics

Los datos son la materia prima, pero necesitamos a las mentes expertas que les van a sacar valor y nos guiarán hacia el cumplimiento de los objetivos establecidos. Estas capacidades incluyen, pero no se limitan, a evaluar herramientas óptimas para trabajar, programar ETL para formatear bases de datos en los formatos requeridos y la gestión general del proceso de obtención de valor. Similar a como lo comentamos en ¿Cómo convertir tus datos en dinero?

5) Implementación

Datlas_checklist_implementación

Este tema tiene que ver con el diseño experimental a la hora de implementar un ejercicio de analítica. Sobre todo para poder contrastar si haber integrado la analítica tuvo un cambio a favor o en contra de la manera en que tradicionalmente se hacía esa tarea. Por ejemplo,  si ahora implementaste un nuevo equipo, tecnologías e infraestructura para analizar el programa de lealtad de tu compañía ¿Cómo validas que la inversión haya retornado? Ahorraste en tiempos, ganaste más dinero, lograste mejores redenciones e las promociones que les enviaste. La sección de implementación se relaciona con los factores que definen el éxito del proyecto.

6) Mantenimiento

Datlas_checklist_mantenimiento

Un checklist de éxito en proyectos de analítica tiene que contemplar los procesos de mantenimiento. Por ejemplo en este caso de revisar programas de lealtad hay que responder ¿Cómo será la carga de nuevos usuarios? ¿Cada cuándo? SI algo falla ¿Quién lo resuelve? ¿Cada cuándo se “refactoriza” o se retan los algoritmos?

Y vamos a ser redundante en uno,por temas de  experiencia propia, tendremos que incluir la importancia de analizar

7) Restricciones

Todas las preguntas asociadas a las restricciones en todas las áreas funcionales con las que colaboraremos. Pueden ser desde presupuesto financiero, tiempo disponible, recursos dedicados, otros proyectos activos, entre otros. Todo lo que vaya a tener un impacto o riesgo en nuestro proyecto puede afectar.

Datlas_barra_suscribir

Hasta aqui la columna de hoy, esperamos que después de haber leído esto tengas una mayor idea de cómo implementar un CHECKLIST para tu organización. Recuerda utilizar estos recursos como inspiración y adaptarlo al contexto y madurez tecnológica de tu negocio. Recuerda compartir y no olvides registrarte al nuevo “DATA PLAYBOOK VOL II” que estaremos liberando muy pronto GRATIS. Sólo da click en la liga.

Elaborado con ideas y experiencias propias de la startup DATLAS e inspirado por la fuente: https://www.fast.ai/2020/01/07/data-questionnaire/

¿Por qué pueden fracasar los proyectos de Ciencia de datos?

Según estadísticas de Kaggle, entre el 70 y 85% de los proyectos de ciencia de datos fallan en alguna rubrica a la hora de ser implementados. En esta columna dedicaremos un espacio para analizar sobre las principales razones de fracaso en proyectos de analíticas. Esto lo haremos utilizando una encuesta a más de 16,000 participantes de la industria de “data science”.

Como preámbulo, es justo entender en esta lectura porqué estos proyectos nacen de manera inherente con problemas de dimensionamientos en tiempo, recursos y esfuerzos.  Como cualquier iniciativa de tecnologías, los proyectos de información son complejos. Entre más grande la organización más difícil se vuelve integrar una visión estratégica a problemas de datos. Aún en compañías pequeñas y medianas nos vamos a enfrentar al retador mundo de la estadística y cómo usar técnicas matemáticas adecuadas para sacarle valor a los datos de mi negocio. Esto sin mencionar que en cualquiera de los casos hay que hacer una venta interna sobre lo que probablemente será una “caja negra” . Todo esto se traduce en resistencias internas en la organización, plantear proyectos sobre fundamentos que no se conocen al 100% , entre otros.

También puedes leer: “No se aprende “Big Data” en un curso de 2 horas, pero tampoco requieres un doctorado” .Datlas_barra_suscribir

Con este importante contexto , vamos a tener la óptica de que en proyectos de analítica de datos es muy probable que nos enfrentes a algunos de estos obstáculos (mencionados como respuestas de la encuesta).

El pase de diapositivas requiere JavaScript.

Problemas de Colaboración-Organización

En una compañía , este tipo de proyectos involucra a 3 áreas: negocios, TI y analítica (si existe el área, en su defecto sería TI o similar). Las encuestas muestran que existe principalmente faltas de comunicación.  Esto principalmente viene de que cada área tiene sus especialistas, a los que les gusta hablar su propio lenguaje. También que no necesariamente se le informa al negocio la manera en que se está resolviendo el problema.

Datos

En general las compañías y organizaciones tienen datos gracias a los sistemas que han implementado durante la última década. El problema es que esta información no está lista para consumir. Al menos el 30% de los que respondieron la encuesta identificaron la falta de datos como un reto. Lo más común es que el proyecto se estime sin considerar los tiempos reservados a la limpieza e integración de datos con los que se va a trabajar.

Talento

Los especialistas en datos están muy demandados y dentro de las organizaciones han optado por capacitar a su personal interno para resolver estos retos de analítica. Sin embargo, esto ha traído consigo falta de método y de respuestas precisas a los retos de negocio. En la encuesta mencionan el 42% de los retos son asignados a la obtención de talento. También puedes leer “5 perfiles para una estrategia de datos en tu organización”.  La necesidad de desarrollar  e incorporar equipos con experiencia en el área de analítica que puedan planear proyectos con mayor probabilidad de éxito cuidando los temas de fracaso común como los mencionados en la encuesta.

Herramientas y Presupuesto

Resolver nuevos retos de big data algunas veces requiere de nueva infraestructura.  Entre mayor sea la cantidad de datos y las áreas de la compañía a atender se van a requerir herramientas más sofisticadas y presupuestos.  Algunas de ellas las mencionamos en nuestro “Data Playbook”. Pero como aclaramos en la charla del INCMTY 2019,  las tecnología es relevante pero no es lo más importante. El presupuesto primeramente debe ir dirigido a la cultura y personas que estarán revisando los temas, más que a la tecnología. Al final las personas indicadas harán el mejor uso de los recursos que se le asignen a los proyectos.

3_Datlas_Piramide_Porquefracasan_proyectosdeDatos

Cierre

Termina la columna de hoy con la recomendación que la “planeación de escenarios” nos puede ser de utilidad en proyectos de big data. Esto significa que si ya sabemos las posibilidades de enfrentarnos a estos retos deberíamos de prepararnos dando por hecho que estos obstáculos que hemos nombrado aparecerán en el curso del proyecto. Siendo así podríamos generar nuestro propio “checklist” para verificar que contamos con todo lo necesario para echar a andar alguna iniciativa de datos y sobre todo los compromisos de negocio que vienen acompañados de las mismas.

Datlas_barra_suscribir

Esperamos te haya gustado la columna y comparte tus comentarios así como precauciones que tomas en proyectos de datos. Te invitamos además a participar en nuestra lista de prelanzamiento para el “Data Playbook Vol II”.

Equipo Datlas

Keep it weird

 

10 Tendencias de negocios 2020 – Datlas research

Iniciamos el 2020 con toda la intensidad que viene acompañada de una nueva década. Para esta primera columna nos inspiramos en compartir información que hemos recolectado y que nos ha ayudado a nuestro proceso de planificación anual. Te interesará esta columna si tu organización, sobre todo, está pasando o planea pasar pronto por una transformación digital.

Datlas_barra_suscribir

10 Tendencias para el 2020

1) Continúa la adopción de tecnología y el compromiso con la transformación digital

Durante la década pasada los estudiosos y consultoras se dedicaron a encontrar la fórmula de crecimiento en un entorno tan cambiante. Tecnología, tecnología y tecnología. Entendiendo esto como la capacidad de una organización para absorber no sólo nuevas capacidades digitales, sino todos los métodos de trabajo que vienen acompañados de esto. Si había duda de que esto funcionaban la validación que algunas startups tecnológicas han puesto en el radar. Como organización tienes que estar atento a: Medir e incrementar la capacidad de absorción tecnológica, actualizar a tus equipos de trabajo y tener apertura a la innovación.

Datlas_Business-Transformation-gif

2) Integración de máquinas y humanos

Pasamos de los homo erectus a los homo sapiens ¿Qué sigue? una simbiosis cada vez más cercanas entre máquinas y humanos. Computadoras como extensiones de trabajo de profesionales. Analítica con pensamientos y cálculos a velocidades sobrehumanas. Humanos incrementando su fuerza gracias a exoesqueletos, entre otros.

Si bien esto despierta algunas conversaciones éticas, una organización no se debería de quedar atrás. En lo que deberías capitalizar tu atención es: Estudiando e identificando las máquinas más modernas que puedan darte una ventaja competitiva y anticiparte a las implementaciones que tu competencia podría explotar si tu no lo haces.

Datlas_0._stickman__2017._performance_

3) Nuevos métodos de trabajo

La transformación de  PMI a SCRUM, KAN BAN, AGILE, entre otros… a traído ciclos más rápidos de producción así como mejor uso de recursos. Nuevos puestos de trabajo como gestores de proyectos, scrum master y líder de cambio han sido de los reclutamientos más claves de los últimos años. Los equipos dentro de la organización deben de actualizarse a las mejores prácticas para su industria y cumplir con los rituales de seguimiento de proyectos de manera obsesiva. Si es posible hasta que los resultados de estos tengan impacto en los bonos de la compañía.

Datlas_scrum-kanban-agile-waterfall-comparatif-oeildecoach

4) Diversidad por todos lados (oferta y demanda)

En tu operación, dejar de contratar de una sola profesión, escuela e ideología se ha vuelto necesario si quieres ser empático con el consumidor que está allá afuera. La diversidad bien comunicada se reflejada en productos y servicios que se adaptan cada vez más rápido al mercado. Como líder en tu organización deberías poner atención a cumplir con cuotas de diversidad y a socializarlas con tu mercado.

Datlas_diversity_iStock-1024073052-1260x840

5) Combina valor de social con valor de negocios

El posicionamiento de las marcas va a cambiar en la siguiente década compensando el enfoque que las empresas le ponen a integrar valor social a su receta de negocios. La disposición a gastar estará acompañada con la identificación a causas sociales y éticas. Cualquier estructura de generación de valor de negocio debe tener claridad en las formas que comunica la generación de valor y económico. Nuevos enfoques en actividades de marketing, responsabilidad social y altruismo deberán ser aplicados.

Datlas_sharedvalue.png

Datlas_barra_suscribir

6) Incrementos a presupuestos de Ciberseguridad 

Los riesgos de ciberseguridad son cada vez más latentes.  Lo que antes significaba dañar los sistemas de una empresa para validar una capacidad hoy es un negocio y existen granjas de personas apuntando a sistemas vulnerables de corporaciones para ganar dinero. Las organizaciones migrando a la “digitalización” deben establecer un presupuesto para para protegerse de estos ataques. Con especial atención a la siguiente lista:

7) Enfoque a resolver problemas cotidianos y masivos (Salud y Finanzas)

Nuevos negocios y lineas de ingresos enfocados en atender problemas masivos donde existen muchos puntos de dolor. Por ejemplo los lentos y costosos procesos de atención de salud. Lo desesperante que puede ser encontrar todas las semanas los tratamientos necesarios para alguna condición específica. De manera similar, la atención selectiva de los grandes jugadores de sistemas financieros permite la entrada a nuevos participantes.

Las compañías deberían estar alertas de las oportunidades en estos dos sectores y como las regulaciones le abren pasos a otras industrias para participar en resolver estos problemas de millones de personas.

Datlas_Healthcare_cost_concept_gerenme_Getty_Images_large.jpg

8) Transparencia en todos los sentidos, sobretodo en en el manejo de la privacidad de datos personales

Las marcas continuarán siendo juzgadas por la transparencia que ofrecen desde la forma en que generan sus productos, los participantes en sus servicios y la realización de su propuesta de valor sin atentar contra el entorno ecológico. En el mismo sentido, los usuarios de servicios buscarán con más interés a marcas que muestren un manejo de privacidad de datos con seriedad. La confianza en las compañías sera una moneda de cambio de más importancia y las organizaciones deberán enfocarse en generar campañas que incrementen estos lazos en específico.

9) SoLoMo seguirá creciendo y tomando más relevancia

SoLoMo (Social, Location y Mobile) es un tipo de usuario que consume contenido en el lugar en el que se encuentra. Las marcas, junto con sus propuestas de valor, deberán de enfocarse en atraer la atención de sus consumidores en “micromomentos”. Los equipos de marketing deberán de apuntar a la omnicanalidad de difusión y buscar generadores de contenido que puedan apoyar a difundir con más asertividad sus mensajes a audiencias específicas.

10) La tensión internacional incrementa y con ello la incertidumbre

Con Irán-USA, BREXIT, Rusia y China incrementan las tensiones internacionales. Se están perdiendo los miedos por entrometerse en asuntos extranjeros en las potencias económicas más importantes del mundo.  Habrá mucha atención en los movimientos de las potencias asiáticas así como en el nacimiento de nuevos segmentos de consumidores más informados y con mayor poder adquisitivo. Las organizaciones deberían estar vigilantes de estos procesos considerando que puedan tener impacto en tipos de cambio así como políticas de importación.

Datlas_trillion_Growth_Trends_2020
Muy recomendado el reporte de BAIN. Podrás encontrar un vínculo al final de este blog.

 

Hasta aquí la columna de hoy.  Comenta qué tendencia te mantiene más ocupad@ en este inicio de año y cómo te estás preparando para incorporarla a tus actividades.

Equipo Datlas

-Keep it weird-

 

Otras referencias:

Fuente:

 

El santo grial de analytics: “Location Intelligence”, y su controversia con la privacidad – Datlas research

(Este blog es una adaptación del trabajo de investigación del #NYTIMES referido en: https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html)

En los últimos 2 años el escándalo de privacidad de“Cambridge Analytica”y Facebook ha levantado polvo sobre lo invasivo que puede llegar a ser la tecnología en nuestras vidas. Nos dimos cuenta que la red social más importante del mundo podía saber tanto de nosotros (como perfil, amigos, familiares, hobbies, donde estábamos, con quién nos tomábamos fotos, etc.) al grado de poder usar esta información para influenciar nuestros gustos y preferencias. Tal y como lo expusimos en el blog sobre el documental de Netflix “The Great Hack”.

Mientras como usuarios nos preocupábamos por hacer conciencia y comprender esta nueva realidad que vino acompañada de servicios digitales  “gratuitos” (por que tu verdadera moneda de intercambio es tu información), existe otra cara de la historia. Nos referimos a las empresas que estaban aprovechando la poca o nula regulación sobre privacidad de datos para generar formulas de marketing nunca antes vistas. En esta columna hablaremos de un caso que publicó recientemente NYTIMES sobre “Inteligencia de Ubicación” o “Location Intelligence” para Nueva York tratando de explicar los beneficios de estas aplicaciones de analítica, haciendo énfasis en que no podemos dejar atrás el enfoque la privacidad de los datos de las personas.

Si quieres comprender cómo la ubicación le sirve al plan de marketing de un negocio también puedes leer: El secreto de tu negocio: Ubicación, ubicación y ubicación

¿Cómo funciona?

La “inteligencia de ubicación” es una técnica que aprovecha la generación de datos geo-referenciados, es decir datos que vienen acompañados de atributos como coordenadas o referencias geográficas para visualizar en mapas, que permite generar análisis dinámicos de muy alta resolución. Compañías como UBER y DIDI utilizan este tipo de datos para ubicar a sus transportes y usuarios dentro de su app. Pero por otro lado hay otras aplicaciones que venden datos de nuestras ubicaciones sin que necesariamente estemos enterados de cómo o cuándo obtienen estos datos.

Una aplicación, por ejemplo, genera datos nos debería de pedir permisos de ubicación cuando usas el app. En algunos casos, como Waze o UBER, no abre el app si no accedemos a dar este permiso y encender nuestro localizador GPS.

Datlas_comofunciona_

Mientras este abierta la aplicación o puede estar cerrada, pero con servicios de segundo plano, el APP estará registrando nuestros movimientos y ubicaciones en bases de datos que luego serán procesadas y comercializadas. El deber ser es que toda esta información se “anonimice” , es decir se borren identificaciones de personas que puedan ponerlos en riesgo. Sin embargo hay casos de estudio que han sacado a relucir que debido a este tipo de apps podemos ubicar a casi cualquier persona. Aqui un ejemplo de cómo “trackear” al presidente Donald Trump que realizó el NYTIMES

¿Cómo se aprovecha esta información?

El pase de diapositivas requiere JavaScript.

En las imágenes anteriores se comparte un ejemplo para NYC.  De compañías telefónicas y aplicaciones se integraron las ubicaciones durante una semana de los usuarios de un teléfono inteligente en NYC. Aunque de manera integrada no nos dicen mucho, es relevante saber que podemos aislar un punto en específico e identificar su recorrido.

En el caso de la nota particularmente se analizaron datos para Nueva York, sin embargo datos similares están disponibles para México ¿Dónde? … no está tan sencillo. Pero compartimos los logros de @sasha_trub que compartió estos mapas en Twitter con el fin de contrastar los usuarios de IPHONE contra los de ANDROID. Sin embargo cada punto es un usuario de celular que ha sido georeferenciado y podría ser localizado con más profundidad.

El pase de diapositivas requiere JavaScript.

Quién comercializa esta información

Al menos en el continente Americano las empresas con más presencia en el comercio de datos geo-referenciados de usuarios son estas 20:Datlas_logos_compañías

El gobierno de Estados Unidos ya está intentando “limitar” la venta al extranjero de este tipo de información, sobre todo la que utiliza aplicaciones de Inteligencia Artificial. Esto por temas de “seguridad nacional”.

Por otro lado hay mucho generador independiente de aplicativos en facebook, google maps, instagram y otras redes sociales que mediante la habilitación de filtros o juegos obtienen datos de usuarios y se las venden a alguna de estas empresas.

Todos conectados, todos arriesgados

Datlas_smarthead

Para cerrar la columna, te recomendamos tomarte quince minutos para conocer el caso específico del NY TIME (puedes ver la liga al inicio de la columna) y también ser consciente de que la próxima ves que enciendas tu GPS alguien seguramente está registrando estos datos para lanzar alguna campaña de marketing o comercializarlos

¿Qué deberíamos hacer con esta situación? ¿Cómo garantizar que se anónimo y que haya una práctica correcta? Comenta y comparte.

Equipo Datlas

-Keep it weird-

¿Cómo aprender Ciencia de datos? 6 lecciones prácticas tras años de intentos – Datlas TIPS –

Durante los últimos años hemos encontrado una explosión de fuentes de aprendizaje en lo relacionado a temas de ciencia de datos. Estos van desde técnicas de autoestudio, ser sombra de científicos, lecturas especializadas, cursos presenciales, cursos en línea, etc.

De todos estos medios compartiremos en esta columna 6 reflexiones importantes que te serán de utilidad si piensas aprender o estás aprendiendo técnicas de ciencia de datos.

Datlas_barra_suscribir

También puedes leer.

Datlas_Learned_youngone

1) El objetivo de aprender lo tiene el estudiante. Dejamos claro que el maestro no tiene obligación de que aprendas, más bien el estudiante es quien tiene como meta aprender

  • Establecer metas claras en una línea de tiempo: Ser principiante en al menos un lenguaje de programación en menos de 6 meses
  • Cualquier maestro que encuentres (amigos, maestros formales, libros, cursos en línea, etc.) Puede que sea una figura con alto “expertise”, pero es tu trabajo sacarle el mayor provecho

Datlas_datascience_everywhere

2) Se les aconseja a los estudiantes rodearse de todo lo que huela, se vea y se sienta como “Data Science”

  • Entrar a comunidades locales de Datos. Desde grupos de Facebook, los eventos , conferencias más enfocados al tema que tengas cerca, colegas de aprendizaje y finalmente cambia tu lectura a libros de estos temas
  • También busca aportar a la comunidad de regreso lo más pronto posible

Datlas_dominios

3) Apalanca tu aprendizaje iniciando con un campo de dominio donde tengas experiencia laboral

  • Usa tu experiencia laboral, específicamente los datos a los que has estado expuest@ con más frecuencia para que sea un menor reto descifrar la información que vas a analizar
  • También es recomendable mapear 2 ó 3 sectores nuevos de los que quieres aprender y enfocar tus estudios a esas áreas específicas de datos

Datlas_failfast_learnfaster

4) Vas a cometer errores, así que haz que sean rápidos. Recuerda que se aprende más de tus propios errores y no los de los demás

  • Ponte aprueba buscando bases de datos por tu cuenta y generando análisis sin ningún tipo de guía más que tú propia ideación. Sólo ten en cuenta la utilidad de los casos de estudio que estés revisando
  • Ponte en los zapatos del usuario final o de un cliente que quisiera usar esos datos como ventaja para su negocio. Haz el recorrido completo de un analista de datos para transformar datos en accionables

Datlas_nerdreading

5) Aprende a leer documentación técnica y a encontrar información

  • Ciencia de datos tiene como fundamentos la estadística y programación, sin embargo estos son solo los primeros pasos ya que durante el camino habrá que leer mucho para aprender de librerías y métodos que necesitemos aplicar a nuestros análisis
  • Consulta cuáles son las paqueterías o librerías más utilizadas en el lenguaje de programación que estás aprendiendo. Personalmente recomiendo seguir en twitter a otros científicos de datos que publiquen algunos de sus análisis

Datlas_motivation

6) Sé paciente, positivo y busca fuentes de motivación, las necesitarás

  • Ten paciencia, no te frustres. Un buen aprendizaje toma tiempo, a veces avanzamos demasiado rápido y porque tenemos que refrescar la estadística nos frenamos un poco. O bien nos entretenemos mucho en descubrir cómo funciona un nuevo algoritmo cuando con una regresión básica hubieramos solucionado el reto. Hay que ir midiendo qué métodos de aprendizaje nos funcionan mejor
  • También recomiendo seguir en linkedin a personalidades que ya sean científicos de datos de grandes empresas que constantemente publican consejos y guías de aprendizaje para mantenerse más motivado

Datlas_barra_suscribir

Hasta aqui la columna de hoy, recuerda que en este blog contamos con distintos casos de investigación que pueden animarte a investigar. También concluimos con un vínculo a nuestras publicaciones que hemos hecho en conferencias de datos. Esperemos que haya muchos entusiastas de los datos, coméntanos en nuestra redes en Facebook , Twitter e Instagram.

 

 

 

Keep it weird

Equipo Datlas