Archivo de la categoría: big data

4 pasos para preparar tus bases de datos para análisis

Hoy en día la transformación digital cuenta con distintos pilares dentro de los que destaca la analítica o análisis de datos. Apalancar todo el valor que esconden las grandes cantidades de información disponibles en la actualidad permite que los negocios y la sociedad, en general, se organice y genere valor de formas innovadoras. Para lograr un análisis de datos, la materia prima es clave: las bases de datos. Como cualquier materia prima las bases de datos guardan atributos y características que las hacen ser mejores o peores al momento de ser utilizadas como input para un análisis. En esta columna vamos a revisar 4 sencillos pasos con los que podrás asegurar que tus bases de datos estén preparadas y listas para realizar análisis de calidad que generen un verdadero valor diferencial para tu negocio. Estos 4 pasos son: limpieza, reestructura, homologación y clasificación.

free_Suscriber

#1 Limpieza de datos

El llamado data cleansing, por su traducción al idioma inglés, es el proceso de descubrir y corregir o, en casos extremos, eliminar registros de datos que han sido identificados como erróneos dentro de una tabla o base de datos. Este proceso de limpieza de datos permite identificar datos incompletos, incorrectos, inexactos, no pertinentes, etc. y luego sustituir, modificar o eliminar estos datos sucios.

Hay distintos métodos para limpieza de datos. Uno de ellos es el análisis gramatical que identifica errores de sintaxis, es decir, si el sistema lo tiene declarado como una variable numérica y el usuario registro una palabra, este tipo de análisis lo identifica. Existe la transformación, que básicamente ajusta los datos dentro de un formato esperado, en la mayoría de las ocasiones la transformación es para normalizar los datos y ajustarse a valores mínimos y máximos. Otra forma es el eliminar duplicados, que como su nombre lo dice, simplemente identifica registros repetidos y elimina uno de ellos. Finalmente, existen métodos estadísticos mediante los cuales la estadística descriptiva hace visualmente reconocibles las anomalías y posteriormente expertos se encargan de ajustar ese tipo de datos mediante la sustitución de los mismos por valores promedios o algún otro tipo de tratamiento, dependiendo de la naturaleza del dato.

Una vez detectados estos datos “sucios” es necesario identificar las causas para poder establecer flujos de trabajo ejecutables de forma automática para que corrijan o excluyan este tipo de datos. En temas técnicos es común el uso de bibliotecas como Pandas para Python o Dplyr para R.

datlas_mx_blog_data_cleansing

#2 Reestructura de bases de datos

Este segundo paso del proceso de preparación de bases de datos tiene que ver literalmente con tomar una base de datos de cierta estructura como, por ejemplo, 10 columnas por 3 filas y alterarla de tal forma que al final quede una base de datos completamente nueva de, por ejemplo, 6 columnas por 7 filas, pero con los mismos datos ya limpios que obtuvimos en el paso anterior. Para ilustrar este punto utilizaremos un ejemplo muy sencillo:

Supongamos que levantamos una encuesta sobre productos y marcas que podemos encontrar en el baño de cada entrevistado. Los resultados de la encuesta nos darían una base de datos de la siguiente forma:

Entrev edad sexo Prod_1 Prod_2 Prod_3 Marca1 Marca2 Marca3 NSE
1 10 F Desodo

rante

Pasta de dientes Jabon líquido AXE CREST NUBELUZ A
2 25 M Pasta de dientes Sham

poo

Jabon en gel COLGATE ELVIVE AMIGO B
3 23 F Crema para peinar Pasta de dientes Jabon de barra SEDAL COLGATE ESCUDO C

Si quisiéramos que los datos nos digan que artículos son los que las mujeres de 24 a 30 años tienen en su baño, necesitamos manipular los datos de forma que podamos obtener como respuesta a esta pregunta un cálculo de frecuencia.

En este segundo paso es donde tomamos en cuenta las hipótesis o los objetivos de análisis para generar la reestructura de la información. En este caso, por ejemplo, la base de datos ya reestructurada quedaría así:

Entrevistado Edad Sexo Num_Prod Descripcion Marca
1 10 F 1 Desodorante AXE
1 10 F 2 Pasta de dientes CREST
1 10 F 3 Jabón Líquido NUBELUZ
2 25 M 1 Pasta de dientes COLGATE
2 25 M 2 Shampoo ELVIVE
2 25 M 3 Jabon en gel AMIGO
3 23 F 1 Crema para peinar SEDAL

Con lo cual podríamos establecer, suponiendo que utilicemos Excel, un filtro en la columna de edad para seleccionar las edades superiores a 24 años e inferiores a 30, al mismo tiempo que filtramos en la columna de sexo la letra F (de femenino) y simplemente calculamos el total de filas que quedan desplegadas de la tabla. De esta manera respondemos la pregunta inicial.

#3 Homologación de bases de datos

En este punto ya comenzamos a jugar con distintas bases de datos, es decir, muchas veces las empresas tienen distintas áreas donde el modo con el que tratan los datos es distinto. Por lo tanto, al momento de tratar de unificar resultados o compararlos, puede que no se estén tomando parámetros similares y eso difícilmente podrá permitir que se realicen cruces de información de manera eficiente.

Al homologar bases de datos es necesario generar estructuras preestablecidas y un glosario de variables que defina claramente los formatos y las especificaciones necesarias para cada tipo de variable registrada. Un caso muy común por ejemplo es el formato de fechas entre dos bases de datos distintas, mientras uno maneja el formato día/mes/año otro tiene registros como mes/día/año con lo que a la hora de hacer un cruce de información las fechas nunca logran empatar y es imposible realizar un cruce de forma adecuada.

datlas_mx_blog_homologacion_bases_de_datos

#4 Clasificación de bases de datos

Finalmente, tenemos el paso de clasificación. En este punto literalmente el objetivo es darle una etiqueta o categoría a cada base de datos de acuerdo al contexto que estemos manejando, la utilidad de la misma base de datos o las necesidades que estas satisfagan al interior de la organización. De forma general existen dos tipos de clasificaciones para las bases de datos: según la variabilidad de los datos o según su contenido.

Dentro de la primera clasificación existen las bases de datos estáticas, que generalmente son bases de datos de consulta, con registros históricos que no van a cambiar. El típico ejemplo aquí son las ventas de hace 5 años para una compañía de artículos deportivos. Por otro lado, están las bases de datos dinámicas, donde la información cambia a través del tiempo por actividades como: actualización, borrado y edición de datos. El mejor ejemplo en este caso son las bases de datos de clientes (CRM) donde hay constantes actualizaciones de información o incluso eliminación de prospectos.

En la segunda clasificación tenemos las bases de datos bibliográficas, que guardan literalmente registros de autor, fecha de publicación, editorial, etc. En contraste existen las bases de datos de texto completo que almacenan el contenido completo de las citas bibliográficas anteriormente citadas, por ejemplo. También existen subclases como directorios, bibliotecas, etc.

datlas_mx_blog_clasificacion_bases_de_datos

De esta forma logramos tener una integridad entre los datos almacenados, la base de datos que los resguarda, las distintas bases de datos dentro de una organización y su capacidad de complementarse al momento de realizar un análisis. Así de fácil podemos cuidar la calidad de nuestros datos para asegurar que podamos aprovechar todo el poder y las ventajas del big data a la hora de realizar analítica.

Si te interesa conocer más acerca de estos procesos o necesitas ayuda con tus bases de datos, visita nuestro Marketplace o contáctanos en nuestras redes sociales

@DatlasMX

 

Dashboards de negocios, guía para principiantes – Datlas

Un avión donde viajan 300 personas que puede ser conducido por 2 personas, una megaciudad de más de 5 millones de habitantes conducida desde un “war-room” (C4 ó C5) con 20 personas, o la gestión de un mundial de fútbol en más de 20 ciudades a la vez controlado por un equipo de 40 profesionales ¿Qué herramienta tienen en común?  Todos en algún momento usaron dashboards.

Datlas_barra_suscribir

En los negocios ocurre igual. Un tablero de control o dashboard es un lugar donde se pueden monitorear los aspectos más importantes del quehacer de una organización. Sinedo así,en el campo de “inteligencia de negocios” o “business intelligence”, este tipo de herramientas le ayuda a los tomadores de decisiones y operativos a reaccionar de forma efectiva a cambios en el negocio.

1) ¿Qué es un dashboards de negocios?

Es un gráfica que refleja el estatus operativo de datos recolectados en tiempo real (o casi tiempo real) visualizados en una plataforma. Un ejemplo de lo que podría ver un empresa que se dedica a envíos de comida a domicilio en un dashboard.

El pase de diapositivas requiere JavaScript.

Así como los pilotos en un avión monitorean la altura, velocidad, ruta y otros aspectos del vuelo. En un negocio podríamos vigilar las órdenes , las ventas, tiempos de entregan las entregas exitosas, los artículos más vendidos, entre otros.

Te puede interesar nuestra columna titulada: Ranking de Dashboards de COVID-19.

2) Características de un dashboard

Para ser considerado un buen panel de control tendría que integrar:

  • Un sistema valioso de indicadores
  • Visualización e interacción intuitiva
  • Buena calidad de datos como insumo y amplitud en cortes temporales
  • Un sistema completo de arquitectura que permita actualización automática

Recomendamos que leas nuestro ejemplo en: Analítica en Dashboards para Turismo.

3) ¿Cuáles son los tipos de dashboards?

Datlas_niveles

  • Dashboard estratégico: Resume y sintetiza los indicadores más importantes de la compañía para tomar decisiones de manera rápida basadas en datos
  • Dashboards analíticos: Puede ser estratégico y operativo, destinado a que los equipos de mandos altos y medios puedan tomar decisiones de manera más ágil
  • Dashboards operativos: Enfatiza el reporteo de información constante y continua
4) ¿Qué acciones debería habilitar un dashboard?
A) Seguimiento a KPIs
Datlas_saludkpis

Una vez que se realizó el trabajo de planificación estratégica donde se delimitaron los KPIs que los equipos de trabajo deberán de cuidar para que los proyectos tengan buena salud es importante poder visualizarlo en el dashboard. Por lo mismo es útil generar un “semáforo” donde rojo sea señal de gran oportunidad para mejorar y verde sea buena salud.

B) Alertar de comportamientos fuera de rango o prevenciones
Datlas_alertas

Las mejores implementaciones de inteligencia de negocios generan tableros que están listos para alertar sobre comportamientos críticos o situaciones que necesitan inmediata atención. Idealmente estas notificaciones tienen que ser desarrolladas por las personas con más experiencia en la organización y con base a atender las oportunidades que de no atenderse podrían representar un costo no reemplazable a la compañía.

C) Monitoreo en tiempo real
Datlas_gif_Realtime_Dashboard

En una etapa más avanzada habrá que procurar que el monitoreo de los datos sea en tiempo real. Esto requiere necesidades más sofisticadas de infraestructura y que se cuenten con iniciativas de ciberseguridad para asegurar que no haya fugas de información. Esto permitiría una toma de decisiones más oportunas sobre datos que sean reales.

Cierre

Los dashboards permiten ser más eficientes y eficaces en la toma de decisiones operativas y en el cumplimiento de la estrategia de una organización. Hay que trabajar de la mano con el área o la función de planeación en nuestra compañía para generar buena calidad de KPIs, alertas y sobre todo garantizar que los datos más dinámicos sean actualizados en tiempo real.

Datlas_barra_suscribir

Si te interesa seguir conociendo más de este tema (KPIs y herramientas de medición te invitamos a nuestra próxima charla. Puedes registrarte aquí GRATIS: https://bit.ly/dfuturos4 

WhatsApp Image 2020-07-06 at 9.05.32 AM

También solicitar en nuestro marketplace una llamada para platicar sobre este tema y evaluar cómo con alguno de nuestros casos aplicados podemos ayudar a tu organización.

Fuentes:

Tecnología y análisis de datos para negocios antes esta “nueva realidad” post COVID-19

Si bien es cierto que, por lo menos en México, no hemos concluido definitivamente la lucha contra esta pandemia, recientemente hemos optado por “reactivarnos” bajo medidas y protocolos que velan por nuestra salud y cuidan el distanciamiento social. El regreso a las actividades es quizá tan retador como cuando por primera vez tuvimos que entrar en cuarentena. Cada uno de estos cambios nos exige, como negocios, una gran capacidad de adaptación. En esta columna vamos a platicar acerca de algunas herramientas tecnológicas y formas en las que el análisis de datos puede ayudarnos a adaptarnos mejor a esta nueva normalidad.

free_Suscriber

En primer lugar, como siempre lo hemos dicho, antes incluso de hablar de tecnología, están las personas. La cuarentena nos obligó a gestionar a nuestro talento humano a distancia utilizando plataformas tecnológicas como Zoom y Teams para las reuniones y videoconferencias. Asimismo, tuvimos que aprovechar herramientas como Asana o Monday para dar seguimiento a proyectos y actividades. En este regreso a la nueva normalidad el reto más grande recae en operar con menos personal y al mismo tiempo generar suficientes ingresos como si estuviéramos operando con normalidad. Para cada uno de estos retos podemos aprovechar la tecnología y los datos.

Por un lado, para el reto operativo lo primordial es tener mapeados los procesos de negocio para entender que tecnologías pueden ayudarnos a automatizar o eficientizar alguno de esos procesos. Pongamos un ejemplo: Eduardo es gerente de ventas de un negocio que da servicio a otras empresas con maquinaria y equipo industrial. Uno de los procesos más importantes para Eduardo es la atención a clientes y el seguimiento de las actividades. Simplificando enormemente sus procesos, Eduardo se enfrentaba a dos grandes fases que consumían la mayoría del tiempo y recurso humano de su negocio: atender los requerimientos de los clientes y construir la logística de atención en cuanto a tiempos y movimientos de su flotilla de mantenimiento. ¿Cómo está logrando Eduardo apoyarse de tecnología para estos casos? Muy sencillo, en primer lugar, adapto un chatbot desde su página web que mediante preguntas predeterminadas podía interactuar con los clientes para registrar sus pedidos/necesidades y armar, de forma automática, el requerimiento interno. En segundo lugar, apoyado de su área de tecnologías de la información (TI) implementaron un sencillo algoritmo de optimización de rutas que de forma dinámica construía, cada día por la mañana, la ruta óptima para cada cuadrilla de personal con el objetivo de que pudieran atender a la mayor cantidad de clientes, en el menor tiempo y en distancias relativamente cercanas. De esta forma Eduardo logró atender al 80% de los clientes con tan solo el 50% de su personal activo y dar servicio con una mejora del 20% en tiempo de respuesta.

datlas_mx_blog_post_covid_chatbot

Por otro lado, los negocios no solo tenemos que lidiar con una operación limitada sino también con el reto de generar las ganancias o ingresos que habíamos estimado a inicios de año durante nuestra planeación anual. ¿Cómo lograrlo? Es aquí precisamente en donde un buen análisis de datos puede apoyarnos para identificar algunas oportunidades. El ejemplo más claro es el cuidado sobre la salud financiera del negocio. En este nuevo contexto los expertos sugieren enfocarnos en cuidar los flujos de efectivo y empezar a pensar un poco más en el día a día y los objetivos a corto plazo. Un análisis de datos puede ayudarnos a monitorear indicadores como la cartera de clientes, es decir, las cuentas por cobrar que tenemos a favor del negocio. Si no estas familiarizado con este indicador puedes conocer este y otro tipo de indicadores en nuestro Marketplace. Analizar el comportamiento de la cartera de clientes histórica nos puede ayudar a realizar ejercicios de planeación de escenarios teniendo en cuenta las posibles consecuencias indeseables como retrasos en pagos o cuentas que caigan en incobrables.

datlas_mx_blog_post_covid_dashboard_financiero_cartera

Finalmente, otra de las relaciones principales a cuidar en este retorno a la normalidad es la de nuestros proveedores. Las presiones que el cliente ejerce sobre los negocios se traducen también en presiones que nosotros mismos ejercemos sobre nuestros proveedores y así como estamos adaptándonos internamente a este nuevo normal debemos también tomar en cuenta y cuidar nuestra relación con proveedores. Para este caso nos viene a la mente el ejemplo de Sofia, una emprendedora que justo a inicios de año abrió su segunda sucursal de una cafetería con un concepto bastante innovador de comida saludable con un toque de sabor único. Ante esta nueva realidad Sofía se vio en la necesidad de replantear su relación con proveedores para ajustarse a estas circunstancias en donde la atención al cliente fue nula durante algún tiempo e incluso recientemente se reactivó de forma limitada. Lo que logró hacer Sofía fue combinar la tecnología y el análisis de datos para establecer una gestión “justo a tiempo” con sus proveedores principales. ¿Qué fue lo que hizo? Muy sencillo, tomó la información de compras, insumos y producción que había tenido el último año para identificar los niveles medios de inventario que necesitaba por semana y por mes, cuidando algunas temporalidades como vacaciones o cambio de estaciones. Una vez estableciendo esta dinámica de producción realizó un ajuste con base a los movimientos de estos últimos veces en cuanto a pedidos y consumo, que principalmente se tornaron en pedidos a domicilio. De esta forma logró llegar a un acuerdo con sus principales proveedores para instalar un nuevo sistema en su punto de venta desde el cual los proveedores pudieran tener visibilidad de los consumos de insumos que estaba teniendo Sofía y a partir de identificar el punto de reorden, es decir, el punto en el que necesitaban reabastecer, están generando una dinámica mucho más eficiente de uso de recursos y manteniendo sanos, aunque en niveles menores, los niveles de venta y la sustentabilidad de sus negocios.

Así que cuéntanos, ¿qué medidas estas tomando tu para volver a la nueva normalidad? ¿qué tecnología estas utilizando? ¿qué tipo de análisis de datos estas aprovechando?

@DatlasMX

V de Variedad en Big Data: datos estructurados y no estructurados

En más de una ocasión hemos tenido la oportunidad de presentarnos en foros donde hablamos de Big Data como esta nueva gran tendencia dentro del marco de la transformación digital. Al comenzar cada una de nuestras presentaciones, como es nuestra fiel costumbre, contextualizamos acerca de los conceptos que abordamos. Dentro de la explicación de lo que es el Big Data hacemos referencias a las famosas 5 Vs: Volumen, velocidad, variedad, veracidad y valor. Implícitamente, dentro de la característica de variedad hablamos del origen de los datos, las fuentes de donde provienen y del tipo de estructura que tienen. En esta columna vamos precisamente a profundizar en los datos y las bases de datos estructuradas y no estructuradas, lo que son y como es que nosotros las apalancamos dentro de los reportes automatizados Laura para capitalizar un mejor entendimiento, análisis y descubrimiento de oportunidades con alto impacto para el negocio.

free_Suscriber

Como punto de partida hay que entender a que nos referimos con datos estructurados y no estructurados. En primer lugar, los datos estructurados se refieren a la información que se suele encontrar en la mayoría de las bases de datos relacionales (Relational Database Management System o RDBMS por sus siglas en inglés), es decir, en un formato estructurado usando filas y columnas. Suelen ser archivos de texto que se almacenan en formato tabla u hojas de cálculo con títulos para cada categoría que permite identificarlos. Son datos que tienen perfectamente definido la longitud, el formato y el tamaño y que pueden ser ordenados y procesados fácilmente por todas las herramientas de minería de datos. De igual manera, los datos pueden generarse de forma humana o mecánica siempre que los datos se creen dentro de una estructura RDBMS. Para ejemplificarlo de forma más simple, imagina cuando tomaban lista en el salón de clase y el profesor tenía una tabla con nombres, apellidos, la fecha de la clase y un montón de palomitas. Así se “ven” los datos estructurados.

El pase de diapositivas requiere JavaScript.

Por otro lado, existe una clasificación diametralmente opuesta a esta: los datos no estructurados. Aunque si bien entendemos que técnicamente existe también el término de datos semiestructurados en esta ocasión utilizaremos los opuestos para ejemplificar el punto de la variedad dentro del big data y los beneficios de fusionar los distintos tipos de datos a la hora de generar los análisis. Así que, volviendo al tema, los datos no estructurados, que son la otra cara de la moneda son aquellos datos, generalmente binarios, que no poseen una estructura identificable. Es un conglomerado masivo y desorganizado de varios objetos que no tienen valor hasta que se identifican y almacenan de manera organizada. No tienen un formato especifico, pueden ser textuales o no textuales. En su modo más simple, son documentos en PDF, archivos de Word, videos, audios, las fotos satelitales de las hectáreas de siembre que tiene una empresa agrícola, entre otros ejemplos. De la misma forma que los datos estructurados, este otro tipo de datos puede ser generado tanto por humanos como por maquinas.

datlas_mx_blog_datos_no_estructurados
Ejemplo de datos no estructurados (textual)

Ahora bien, ¿Qué relevancia tiene esta variedad de los datos? ¿Qué relación guarda con esto del Big Data? Pues precisamente estadísticas mostradas por empresas como Kyocera estiman que alrededor del 80% de la información relevante para un negocio se origina en forma no estructurada, principalmente en formato texto. Esto quiere decir que, al tener la posibilidad de integrar datos no estructurados al análisis, automáticamente el volumen de información (otra de las V del Big Data) disponible para análisis aumenta a más del doble. Imagínate que llegara un nuevo vendedor y pudiera leer todos los corres de prospección escritos en los últimos 5 años de historia de la compañía. Toda la riqueza detrás de ese tipo de ejercicio hoy es posible gracias al Big data, pero tomar ventaja de los datos no estructurados es una tarea retadora, ya que existe la necesidad de organizar los archivos, categorizar el contenido y entonces obtener información que pueda estructurarse de tal forma que sea capaz de fusionarse con los datos ya estructurados. Aunque sin duda hoy existen en el mercado herramientas de software para el procesamiento, gestión o almacenamiento de este tipo de datos, sigue siendo importante el papel de los analistas de negocio o los mismos dueños para establecer una priorización de esfuerzos con base al beneficio potencial que pudiera obtenerse de ese esfuerzo por capitalizar los datos no estructurados.

datlas_mx_blog_datos_no_estructurados_a_estructurados

Finalmente, desde nuestra experiencia hemos logrado consultar bases de datos estructuradas y no estructuradas para realizar los reportes automatizados de Laura y entregar un verdadero valor agregado al cliente comparado al de los estudios tradicionales que generaba un equipo de analistas sin este tipo de herramientas. Tomemos como ejemplo las redes sociales, un tweet. Hoy es muy común que la gente se exprese libre y abiertamente en twitter acerca de lo que le gusta, le disgusta o incluso donde esta. En nuestro caso, uno de los elementos integrados dentro de Laura es el análisis de tráfico peatonal por categoría de negocios, es decir, que tanta gente está tweeteando acerca de una cierta marca de restaurante o producto. Para poder apalancar estos datos de forma inteligente se hace un proceso de análisis de texto que extraer el nombre del establecimiento, lo coteja con un diccionario de negocios, lo clasifica dentro de la categoría a la que pertenece ese negocio y finalmente lo agrega, de forma estructurada, en una base de datos que pasa a ser consultada como un mapa de calor dentro de nuestras plataformas de Mapas de Inteligencia y a su vez como una imagen de la ubicación analizada y el entorno al hablar de los reportes Laura. Esto nos ha permitido apoyar a negocios a tomar mejores decisiones de ubicación, ponderando no solamente los típicos indicadores estructurados y “fijos” sino también la información no estructurada y, en este caso, dinámica para ofrecer una perspectiva realmente nueva y más holística de las condiciones a las que se enfrenta el negocio al momento de tomar una decisión.

datlas_mx_casos_uso_consultoria_derrama_economica_luztopia_2019

Como este caso hemos aprovechado otro tipo de datos no estructurados para apoyar a empresas de distintas formas, en tu caso ¿generas información no estructurada? ¿te interesa aprovechar el poder que esconde esa información? ¿o simplemente te gustaría experimentar con la información no estructurada que existe allá afuera y que hoy podemos poner a tu disposición? Contáctanos y cuéntanos

@DatlasMX

 

El arte de los pronósticos en los negocios – Datlas Research

Pronosticar es uno de los primeros pasos en la planeación (que en realidad tendríamos que especificarlo como “planificación”) de cualquier organización.  Nos da noción sobre los escenarios que se podrían concretar en un corto, mediano y largo plazo lo que nos permite preparar la asignación de recursos en el año considerando temporalidades, estacionalidades, tendencia y, en algunos casos, situaciones atípicas.  En esta columna revisaremos los casos de uso más importantes de pronósticos y daremos una guía básica de las etapas más importantes en un pronóstico.

Datlas_barra_suscribir

Un pronóstico puede ser tan útil como sea cercano a la realidad. Hay casos prácticos tan negativos como las proyecciones que se han intentado hacer en tiempos recientes del COVID-19. Al menos en México, hemos tenido muy malas experiencias proyectando. Se decía que el “pico” de la pandemia iba a ser cerca de la primera semana de mayo. Parece que al día de hoy seguimos sin poder dar . Mismos errores han pasado como en proyecciones políticas como las de USA que daban por ganado a Clinton sobre Trump.

El pase de diapositivas requiere JavaScript.

Por otro lado los casos de éxito con más validez son esos pronóstico de la bolsa que suelen tener periodos de comportamiento estático. Claro, en justas proporciones, cada cierto tiempo sucede algo atípico. Como hace un par de semanas, también por tema del COVID-19 los ritmos de recuperación han sido atípicos. Otros casos de éxito es pronosticar la población, que crece a un ritmo relativamente constante. O por ejemplo proyectar a futuro los ingresos por el mercado de apps.

El pase de diapositivas requiere JavaScript.

¿Por qué te debería importar poder proyectar?

A pesar de que las proyecciones no siempre son 100% exactas, nos ayudan a….

  1. Saber de dónde vienen los ingresos y cuáles son las líneas de flujo con más crecimiento
  2. Es posible también monitorear de dónde se pierden ventas o valores
  3. Es útil para planear inversiones o gastos importantes considerando la temporalidad

Datlas_Forecast

Algunos de los campos de negocios donde los pronósticos son protagonistas en la planeación

  • Pronósticos para la demanda. Preparar compras de inventario no es cosa sencilla, más de artículos que son perecederos o tienen poco tiempo de vida en anaquel.
  • Cuentas de marketing. Estimar el tamaño de distintos mercados puede orientarnos en dónde vale la pena hacer una apuesta de inversión. Quieres saber a qué mercado enfocarte: ¿Fintech? ¿Salud? o ¿Real Estate? un dimensionamiento de mercado y conocer las temporalidades de cada uno puede ayudarte a la decisión.
  • En la introducción para un nuevo producto. Planificar los costos asociados a un producto de lanzamiento, vigilar que las metas estén cumpliéndose en tiempo y forma así como
  • En ventas. Proyecciones más usadas, cuál es el nivel de ventas que esperamos nos puede ayudar a identificar las semanas de mayor intensidad para reforzar las capacitaciones en nuestra mano de obra o preparar nuestra infraestructura.
  • En tráfico web. La mayoría de las plataformas web ya ofrecen este servicio. Incrementos al tráfico te pueden ayudar a preparar tus servidores o servicios para no colapsar. Imagínate una página de venta de boletos en línea que quiere manejar las dinámicas de preventas con descuento ¿Qué tráfico esperar o pronósticar si los primeros 100 boletos los ofrecen al 50% de descuento?
  • Un hábito de dirigentes, en general. Monitorear avances de resultados apegado a proyecciones. Responder si vas bien , neutral o mal no indica nada en negocios. Hay que tomar en cuenta que al principio del año de operaciones tenemos que pronósticar cuáles son los escenarios numéricos factibles y  a partir de eso luchar para lograrlos.

Técnicas frecuentes de proyección

Usualmente cada industria viene acompañado de sus técnicas de pronósticos. Sin embargo los fundamentos estadísticos suelen ser compatibles o similares. Estos métodos buscan acoplar el futuro a la tendencia histórica, temporalidad, estacionalidad y/o  cambios estructurales.  Algunos son más sensibles a la tendencia, otros a la estacionalidad o cambios estructural. La propuesta es generar 3 o 4 validaciones de modelos por serie temporal y a partir de eso quedarse con el que mejor ajuste.

Las técnicas más comunes: Promedio móvil, Regresión lineal o múltiple

Técnicas más avanzadas: ARIMA, Prophet , Random Forest, entre otros

El pase de diapositivas requiere JavaScript.

¿Es difícil proyectar?

Las técnicas de proyección requieren fundamento matemático, conocimiento de industria y un poco de prospección de lo que va a pasar en el futuro del mercado. Siendo la estadística la más compleja de estas tres. Conocimientos básicos de estadística nos ayudarán a generar buenos pronósticos cuando tenemos buena historia de los datos. Sin embargo si hablamos de estimar cómo le puede ir a una nueva empresa o al lanzamiento de un nuevo producto, necesitamos distintos ángulos de enfoque para que verdaderamente pueda funcionar.

Otra oportunidad en los pronósticos de negocios es poderlo vender bien. Normalmente múltiples áreas en una organización generan distintas proyecciones y como finalmente esto queda a “ojo del analista” pueden variar. Haría más sentido unificar una proyección a la que todos los departamentos se puedan alinear. En ese sentido hay mucho arte en la presentación y venta de la proyección.

Datlas_barra_suscribir

Finalmente un “safe” o paso de seguridad es generar al menos 3 escenarios en donde tengamos proyecciones pesimistas, neutrales y optimistas. Siendo que durante el año habrá situaciones que no puedes prevenir completamente, pero sí sospechar. En ese sentido si alguno de los riesgos se concreta probablemente se concrete el escenario pesimista. Por otro lado si una nueva oportunidad se abre, por ejemplo las empresas de videollamadas en época de COVID-19, hay situaciones que pueden llevar los números a las nubes.

Datlas_proyeccion_Hugo

El balance

Recomendamos fuertemente que organizaciones y más que nada los negocios tengan la disciplina de manejar pronósticos en sus líneas de ingreso. Sobre todo en tiempos del COVID-19 es importante plantear escenarios pesimistas en los que cierto nivel de ventas, tráfico o demanda impactaría en una toma de decisiones empresarial directamente. Hay que tomar en cuenta también que algunos efectos tienen “rezago”, es decir, que el mercado no responde inmediatamente, por lo que hay que asesorarse con equipos que tengan conocimiento en estadística para que puedan dar una correcta lectura de estas situaciones.

Hasta aqui la columna de hoy, esperamos poderte haber compartido más del arte de los pronósticos en los negocios. Recuerda suscribirte al blog, a nuestro podcast y compartir en tu red. Si te interesa adquirir servicios de Datlas y que te orientemos en tus pronósticos no olvides visitar nuestro marketplace y solicitar una llamada.

15. ¿Emprendedor - Lo último es la tecnología, identifica un dolor grande y alivialo

Saludos

Equipo Datlas

-Keep it weird-

 

Fuente:

Diagnóstico de bases de datos: Aprovechando al máximo la información que genera tu negocio

A finales de mayo escribimos una columna en donde establecimos los 5 pasos para aprovechar los datos de tus puntos de venta. Dentro de este proceso el paso #1 eran precisamente los datos, mientras que los siguientes pasos se enfocaban en como transformar estos datos en información y de ahí derivar insights para establecer accionables. En esta ocasión vamos a profundizar en ese primer paso, para hablar de la forma en la que un buen diagnóstico de tus bases de datos, una radiografía, puede ayudarte a preparar los datos para realmente aprovechar y capitalizar al máximo durante los siguientes pasos del proceso de aprovechamiento.

free_Suscriber

Así que comencemos, cuando hablamos de bases de datos nos referimos a ese repositorio de registros que tiene el negocio con el récord de los distintos hechos y sucesos que acontecen durante su quehacer diario. ¿Más fácil? Imagínate una hoja de cálculo en Excel con columnas y filas llenas de datos como: nombre del cliente, producto que compro, precio, etc. Ahora bien, el hecho de capturar la información y tenerla digitalizada sin duda es un primer paso, pero muchos negocios en la actualidad creen que eso es suficiente, como si la transformación digital y las nuevas tecnologías como big data o inteligencia artificial se trataran solo de tener datos y de tenerlos digitales. La realidad es muy distinta, sin duda tener los datos es importante, pero su calidad y su estructura son cruciales para poder capitalizar todos los beneficios que esconden. Para dejarlo más claro, imagínate que llegas a un lugar y pides una silla para poder sentarte, la persona a la que se la solicitaste te responde que efectivamente existe una silla y te la trae, pero de pronto cuando te sientas la silla se vence y caes al suelo. ¿Dónde estuvo el detalle? Precisamente en la calidad y estructura de la silla, es decir, no hace falta simplemente tener lo necesario, sino asegurarnos que eso que tenemos puede soportar y capitalizar las exigencias a las que lo vamos a someter.

datlas_mx_blog_diagnostico_database

Así que ¿por dónde empezar? Lo primero es hacer una pausa, un corte y generar el listado completo de variables que maneja el negocio. En nuestro idioma, cuando trabajamos con un cliente, a esto le llamamos generar un glosario de variables. Esto le permite tanto al negocio como a nosotros entender la situación actual, la radiografía, el estatus. Ahora bien, este listado no es simplemente enumerar y nombrar cada dato o variable, sino realmente diseccionar cuestiones como: el tipo de variable, la periodicidad con la que se actualiza, la categoría a la que pertenece dentro de los procesos del negocio o de los atributos que analiza la compañía, el formato con el que se registra, entre otros. Un caso práctico lo vivimos a finales del año pasado trabajando con Andrés, dueño de una cadena de restaurantes con presencia en Monterrey y Playa del Carmen. Cuando Andrés llegó con nosotros con el reto de generar nuevas iniciativas de inteligencia para su negocio, lo primero que preguntamos fue precisamente “¿Qué datos tienen?” y después de un largo silencio concluimos que era necesario hacer el diagnostico.

Al construir el glosario de variables nos dimos cuenta de algunos detalles interesantes como, por ejemplo: registros con problemas ortográficos, formatos de fecha distintos entre cada sucursal (una registraba día/mes/año y otra lo registraba como año/mes/día), había productos que se registraban por peso mientras otros eran registrados por unidad o paquete, etc. Este primer gran paso nos permite hacer lo que un doctor, guardando sus proporciones, diagnosticar y entender que es lo que tenemos que hacer.

datlas_mx_blog_diagnostico_Model-variable-list-Predictor-variables-used-in-models-type-of-data-categorical-or

Una vez que entendimos los datos en su mayor granularidad y esencia, el siguiente gran paso del diagnostico es evaluar la estructura que guardan esos datos dentro de la infraestructura de la empresa. ¿En español? Tomamos el glosario de variables y nos metemos a las entrañas del negocio a ver literalmente la base de datos donde duerme cada uno de esos datos. La clave en este punto es entender si el acomodo, literal, de filas y columnas es el ideal para generar las manipulaciones y los tratamientos necesarios para generar inteligencia. Volviendo al caso de Andrés, como ejemplo, el dato de ventas se registraba en una base de datos que tenia a los clientes (un cliente por fila) y se iba llenando cada transacción (venta) por columna, es decir, si un cliente había comprado 5 veces tenias una base de datos con una fila (el nombre del cliente) y 5 columnas (una con cada fecha de compra). Claramente esta es una estructura difícil de manipular si te pones a pensar en generar analíticos descriptivos como la cantidad de veces que ha comprado dicho cliente o el total de clientes que han comprado 2 veces o más, por ejemplo. De esta forma, este segundo acercamiento nos permite diagnosticar la forma en la que el dato debe guardar una relación con la estructura de la base donde se esta registrando y guardando para poder capturar su potencial de análisis.

datlas_mx_blog_diagnostico_01-a-basic-flat-file-spreadsheet-database-100739687-large

Finalmente, el paso decisivo del diagnóstico es evaluar la relación que guardan las distintas bases de datos del negocio. Si te fijas, nos hemos ido desde lo más particular, que es el dato, pasando por lo más agregado que es la base de datos y hemos llegado a lo más general que es la relación de estas bases dentro de los procesos de negocio. Esta perspectiva esconde los últimos “síntomas” que necesitamos saber para poder dar un diagnóstico certero. En esta etapa lo que buscamos es entender la forma en la que las bases de datos se conectan entre ellas para contar la historia de cada dato enlistado en la parte del glosario. Lo importante es encontrar los datos conectores, es decir, aquellos datos claves que nos ayudan a interconectar una base con la otra. El ejemplo más claro, en el caso de Andrés, es la forma en la que el dato de cebollas dormía en una base de datos de recetas, donde cada receta tenía un identificador único (ID) que a su vez se conectaba a los datos de las ordenes que el mesero tomaba y enviaba a cocina para su ejecución y finalmente ese mismo identificador servía para descontar de la base de datos de inventarios los productos y la cantidad correspondiente. Se lee mucho más complicado de lo que es, pero el mensaje es muy sencillo y claro, entender la forma en la que se comunican las bases es clave para poder hacer un diagnóstico completo.

datlas_mx_blog_diagnostico_database2

De esta forma, siguiendo la analogía del doctor, podemos darnos cuenta fácilmente en que parte se encuentra el verdadero “dolor” e ir a tomar acciones puntuales sobre cada uno de ellos. En el caso de los datos, por ejemplo, las soluciones son claras: limpieza, clasificación o exploración de fuentes de generación de datos para capitalizar nueva información. En el tema de la base de datos individual donde duerme el dato las alternativas son: reestructura u homologación. Para la parte de la comunicación entre bases de datos lo que se puede hacer es: generar variables de identificación única, optimizar la interconexión entre bases de datos o replantear el diseño de consultas (querys). Con todo esto el negocio esta listo para poder capitalizar sus datos y generar inteligencia, que se traduce en mejor gestión de procesos, segmentación de clientes, mejoras a la oferta, ajustes de precio, control de inventarios y mucho más.

Así que ya lo sabes, si quieres aprovechar la generación de datos de tu negocio lo primero es realizar un diagnóstico. En Datlas estamos a tus ordenes para apoyarte, como a Andrés, en este proceso de descubrimiento para poder descifrar todos los beneficios que se esconden en tus bases de datos.

@DatlasMX

 

 

Lo que esconden tus datos: Análisis de CRM para mejorar precios, catálogos, marketing y ¡más!

La vida de un negocio son sus ventas. La complejidad es que las ventas son tanto arte como ciencia. Uno de los retos más comunes cuando trabajamos con empresas o grandes corporativos es el descifrar la fórmula para construir una estrategia comercial exitosa. Sin duda en estos tiempos esa fórmula se vuelve dinámica ante las circunstancias y son muchos los elementos a configurar. Por suerte la materia prima detrás de toda la parte “científica” de esto se encuentra en nuestro elemento favorito: los datos. En esta entrada vamos a platicar acerca de las distintas formas en las que los datos comerciales y de tu CRM se pueden usar para capitalizar mejoras en precios, catálogos, marketing, programas de descuentos y mucho más.free_Suscriber

Antes de comenzar es crucial entender un poco de historia. La gestión de la relación con clientes ha sido uno de los componentes más antiguos de los negocios. La infalible pluma y papel fueron suficiente en su momento para llevar el registro básico de las ventas y los clientes. En los años 50´s llegó el famoso Rolodex (se vale buscar en Google, yo también lo descubrí recientemente) que ofrecía la capacidad de girar los registros mientras añadías nuevos clientes y actualizabas la información de otros ya existentes. El siguiente gran paso se da a inicios de los 80´s cuando llegan las bases de datos a revolucionar el proceso de consolidación de la información de los clientes, aunque a finales de esa década el aprovechamiento de estas bases de datos era aún limitado, figuraba tan solo como un directorio o Rolodex digital, con pocos insights y casi nulas interacciones de la compañía con sus clientes. Hasta inicios de los 90´s comienza la automatización de los procesos de ventas y justo en 1995 se acuña el termino Customer Relationship Management o CRM, por sus siglas en inglés. A partir de esa década comienza la profundización en los análisis y una gestión mucho más detallada e inteligente de la relación con los clientes.

El pase de diapositivas requiere JavaScript.

Ahora bien, el CRM perse es una herramienta tecnológica pero su punto de partida, como en todo, son los datos que se alimentan en él. En este sentido la primera etapa importante antes de analizar los datos comerciales y de CRM es precisamente generarlos. Dentro de esta etapa de recolección de datos es importante establecer los procesos de negocio en donde interactúas con tu cliente y se abre la posibilidad de ese intercambio de datos o de información. Asimismo, es crucial que como negocio definas los datos “necesarios” y los datos “deseados” que buscas obtener de tus clientes para poder comenzar a llenar este CRM. Finalmente, debes establecer una mecánica de incentivos para poder propiciar de manera natural y benéfica para ambas partes el hecho de compartir estos datos.

Vamos a aterrizarlo en un caso de negocio. Eugenio, uno de nuestros clientes dentro de la industria energética, nos pidió apoyo para generar su estrategia go-to-market de su nuevo panel solar. Esta claro que analizamos sus datos comerciales y de su CRM, pero lo interesante aquí es resaltar los 3 atributos que mencionamos en el párrafo anterior. Eugenio tenia claro que uno de sus procesos de negocio mas importantes era el hecho de la interacción del cliente en su página web, dado que por la naturaleza del producto y el servicio que lo acompaña, el anaquel digital resultaba muy relevante. Después estableció que los datos que necesitaba obtener del cliente eran su ubicación y el consumo promedio de luz, aparte de los datos de contacto. Fue así como se le ocurrió armar una “calculadora de ahorro” dentro de su sitio web como un incentivo para que el cliente pudiera compartir estos y otros datos a cambio de un beneficio directo que era el calculo del monto estimado de ahorro que podía obtener con el nuevo panel solar que se estaba ofreciendo.

datlas_mx_blog_crm_customer_master_data_management-01

Hasta aquí se ha logrado establecer una dinámica para obtener los datos, el paso siguiente es precisamente adentrarnos en los datos. Cuando estamos analizando datos comerciales y de CRM es importante hacer un diagnostico y establecer el inventario completo de variables con el que vamos a estar trabajando, es decir, a pesar de que para un negocio un medio de contacto sea el teléfono, para otro podrá ser el correo electrónico o incluso ambos. En este sentido el punto de partida es entender muy bien la base de datos, las variables con las que vamos a estar “jugando” y comenzar a establecer algunas categorías de datos como, por ejemplo: perfil, canal fuente, dinámica. En el caso de Eugenio por ejemplo cuando hablamos de la categoría perfil estamos agrupando todos los datos que hablan del cliente como, por ejemplo: su nombre, su correo, su teléfono, el lugar donde vive, etc. Cuando hablamos de canal fuente estamos hablando de la forma en la que conoció y se entero de la empresa, como llego, si tuvo algún costo esa publicidad por la que se enteró, etc.

Finalmente, en la categoría de dinámica es necesario hacer una profundización todavía más importante ya que nos referimos a los datos que distinguen y diferencian a los clientes a lo largo de las etapas del proceso o ciclo de ventas. En este caso cuando hablamos de proceso o ciclo de ventas es relevante comprender la metodología que esta utilizando el negocio. Sabemos que existe mucha literatura, estudios y propuestas acerca de ventas, procesos y ciclos, algunas de 5 pasos, 7 etapas, 9 fases, etc. Aquí lo esencial es entender la forma en la que el negocio distingue entre un cliente que esta en la etapa 1 y como es que pasa a estar en la etapa 2, por ejemplo. En el caso de Eugenio, ellos tenían una gestión muy sencilla con 3 grandes etapas: lead, prospecto y cliente (o venta). En su equipo definieron un lead como todo aquel individuo que haya mostrado interés en su producto a través de compartir su información. Esa persona no podía pasar a la etapa de prospecto si no habían ocurrido 3 cosas: había entrado en contacto con un representante de ventas, había aceptado que se le generara una cotización y ya se le había generado y comunicado esa cotización. Finalmente se convertía en cliente (o venta) una vez que aceptada dicha propuesta o cotización y se generaba la factura de venta. De esta manera, se logra una claridad en cuanto a los datos que permite entender a quien realiza el análisis donde buscar y que datos utilizar al momento de atacar los distintos retos o hipótesis que se planteen al inicio del ejercicio.

El pase de diapositivas requiere JavaScript.

En cuanto se tiene claro los datos y las estructuras del CRM y la información comercial es momento de apalancarla para atacar los retos del negocio. En este caso, por ejemplo: mejorar precios, catálogos, marketing y programas de descuentos.

En el caso de mejoras o cambios en precio, tomando como ejemplo a Eugenio y su negocio, es de suma importancia poder apalancar los datos que tienen que ver directamente con la conversión, es decir, con la parte del proceso en el que pasa de prospecto a cliente. Lo que se hace aquí es agrupar a aquellos individuos que hayan tenido como principal indicador de “no conversión” un tema del precio y utilizar los datos del CRM para generar una segmentación. Ahora bien, cuando nos referimos a segmentación no estamos hablando del típico hombre/mujer, edad, etc. Sino un tema de necesidades, es decir, hay que descifrar que nos pueden decir los datos acerca de la necesidad o el beneficio percibido por el cliente en contraste con el precio. Por ejemplo, en el caso de Eugenio, ellos tenían claro el consumo promedio, con lo que pudieron hacer un análisis y encontraron una correlación entre consumo promedio y el precio estándar del nuevo panel, de tal forma que se dieron cuenta que para el punto de precio del nuevo panel el segmento de clientes al que debían dirigirse se distinguía por tener una necesidad de ahorro a partir de cierto consumo. ¿Y eso que con el precio? Precisamente estos insights permitieron que se buscaran alternativas para generar productos con un punto de precio más bajo para ese segmento detectado o incluso explorar alternativas como financiamientos, arrendamientos o planes de pagos que pudieran tener un impacto indirecto en la percepción del precio por parte del cliente.

datlas_mx_blog_crm_pricing

Por otro lado, en el tema de mejoras al catálogo de productos el acercamiento al reto debe darse de forma distinta. Retomando el ejemplo de Eugenio y su negocio, para este punto estaríamos enfocándonos en analizar los datos dentro de las etapas de lead y prospecto, para destacar cuales fueron aquellos productos en los que las personas mostraron más interés. Igualmente cabe la posibilidad de una segmentación por necesidades. Si analizamos, por ejemplo, las palabras claves o los anuncios utilizados en las campañas de generación de leads y las cruzamos con términos relacionados nos podríamos dar cuenta, como Eugenio, que existe un particular segmento de clientes que no solo está interesado en paneles, sino que en el contexto de su búsqueda esta preocupado por el medio ambiente, busca alternativas de energía sustentables, renovables, etc. De tal suerte que pudiera explorarse, haciendo quizá un A/B testing, la forma de incluir dentro del catalogo de productos unos focos o bombillas de tecnología lead ya que consumen menos energía, iluminan más, etc. De esta forma hay un impacto directo en el catalogo de productos.

datlas_mx_blog_consultoria_crm_catalogo

Finalmente, para el tema de marketing, que sin duda es todo un universo y un mundo en sí mismo, existen bastantes formas de apalancar los datos comerciales y del CRM para enfocar mejor las campañas de mercadotecnia. En el caso de Eugenio, e incluso para nosotros, la información de la fuente desde la que se genero ese lead ha sido muy importante para discriminar entre los distintos canales de difusión y marketing. Igualmente, los datos del perfil del cliente nos han ayudado a definir áreas geográficas, zonas, regiones en donde enfocar puntualmente las campañas. Complementando con el punto anterior y apalancando incluso también información de la fase de cliente (o venta) se pudieran analizar atributos o características claves que el cliente percibe y expresa acerca del producto como para ajustar los mensajes, las frases y los anuncios en términos de lenguaje, beneficios a comunicar y formas de realizar el acercamiento.

Así que estas son algunas de las formas en las que hemos apoyado a nuestros clientes a aprovechar toda la información comercial y de su CRM para generar mejoras que impacten en los resultados de su negocio. Si estas interesado en explorar algo como esto te invitamos a visitar nuestro Marketplace y agendar una sesión con nosotros para platicar al respecto y ver la forma en que pudiéramos ayudarte.

Hasta aquí la columna de hoy, gracias y no dejes de compartirnos tu opinión en redes sociales

@DatlasMX

 

E-commerce: Digitalización de anaqueles y analítica de datos

A inicios de abril del 2020, en pleno comienzo de la pandemia mundial del COVID-19 escribimos una columna introductoria al tema de comercio electrónico donde establecimos un plan muy sencillo para iniciar tu e-commerce, atendiendo las típicas dudas de inicio como ¿es mejor usar un canal existente o crear el mío? ¿cuál plataforma es la más indicada? Y ¿Dónde queda la analítica? Te invitamos a echarle un vistazo si no has tenido oportunidad, porque justo el día de hoy estaremos profundizando en este tema para dar consejos más puntuales respecto a la digitalización de los anaqueles y la recolección de datos dentro de estas aplicaciones.

free_Suscriber

El hilo conductor de la columna de hoy será el caso de uno de nuestros clientes, Patricio, que el año pasado decidió llevar su negocio físico al mundo digital. Un negocio familiar con varias sucursales a lo largo de Nuevo León y con un reconocimiento de marca en toda la zona norte del país. El reto en ese momento era ¿cómo continuar con el crecimiento que había tenido durante los últimos años? y el entonces nuevo director general puso la mira en el canal digital. Siendo así comenzamos la aventura. El gran problema de inicio es que los emprendedores o negocios creen que incursionar en el mundo digital es tan sencillo como subir una foto a sus redes sociales, o incluso están en una posición tan cómoda en términos de recursos que destinan un presupuesto directamente a la ejecución sin haber realizado una planeación adecuada. La digitalización de los anaqueles trae consigo un esfuerzo equivalente a montar una nueva sucursal física, aunque con sus retos particulares. Así que el viaje comenzó con la planeación.

Planeación

Existen distintas metodologías para planeación estratégica y gestión de proyectos. En nuestro caso, como se han dado cuenta, preferimos las metodologías agiles. Trabajando con Patricio no fue la excepción. Nos sentamos un día y planteamos los requisitos necesarios para poder generar un producto mínimo viable (MVP por sus siglas en inglés) de la tienda en línea. Las características que tomamos en cuenta para plantear esta primera fase, que denominamos prueba de concepto, fueron: productos, ticket promedio esperado e incentivos de compra, cobertura geográfica inicial y el grupo de control para prueba.

Al hablar de productos es importante destacar que este era un negocio en marcha, con un catalogo de más de 500 SKUs por lo que hacer una selección de productos inicial para digitalizar nuestro anaquel es importante. En este caso decidimos catalogar el top 10 de productos más vendidos. Otro factor clave en la digitalización de anaqueles es precisamente la presentación. Todo esto incluye detalles como: las fotografías, las descripciones de cada producto, así como detalles de logística, entrega, etc. Pero en este caso no vamos a profundizar tanto en los accionables operativos. Una vez definidos los productos pasamos a establecer un ticket promedio y un incentivo de compra, esta parte es crucial para nosotros ya que es la manera en la que el cliente obtiene un retorno “inmediato”. Si bien este retorno no es propiamente un ingreso marginal, lo que buscamos con esto es la validación en el mercado, es decir, probar que hay apetito por los productos y que existe un mercado dispuesto a consumir por medio de este nuevo canal en el que estamos incursionando. En este caso, por ejemplo, establecimos dar un incentivo de envío gratis a aquellas personas cuyo ticket promedio fuera de $300 MXN o más. Para el tema de cobertura geográfica se definió iniciar con el municipio de Monterrey, que era la zona más conocida y con mayor control para Pato y su equipo. Finalmente, se definió un grupo de control, es decir, un grupo de personas con las que pudiéramos tener un contacto más directo durante esta primera fase de validación para poder obtener retroalimentación acerca de todo el viaje del usuario y establecer, desde inicio, las adecuaciones o mejoras necesarias para poder asegurar la satisfacción del cliente a lo largo de su experiencia de compra por medio de este nuevo canal digital.

datlas_mx_ecommerce_anaquel_digital

Ahora bien, todos estos detalles de la planeación abonan directamente a responder las preguntas planteadas en la entrada anterior acerca de la selección del canal y la plataforma especifica. Muchos negocios encuentran que sus soluciones pertenecen a un nicho tan especifico de mercado que prefieren montar su propio canal digital, en lugar de adherirse a uno existente. De igual forma, hay empresas que se decantan por una cierta plataforma de e-commerce ya que les agrada más la interfaz con la que pueden gestionar su catálogo, hacer cambios, activar incentivos de compra, etc. Es aquí en donde radica realmente la importancia de la planeación ante un proyecto de comercio electrónico.

De prueba de concepto a prueba piloto

La siguiente “parada” del viaje fue denominada prueba piloto. Básicamente tomamos la tienda en su modo MVP y fuimos escalando. El primer paso natural fue incluir nuevos productos o SKUs, pasando de 10 a más 300 productos de una semana a otra. Pero lo más interesante en esta fase fue integrar las sucursales, los puntos de venta físicos, que ya tenia el negocio como puntos de entrega y recolección de los productos adquiridos por medio de la tienda en línea. ¿Suena familiar el pick & go? Justo fue esa misma lógica la que tomamos para validar en esta segunda etapa. Sin duda las circunstancias de cuarentena y distanciamiento hoy hacen más necesaria y lógica una opción de este estilo, pero en aquellas condiciones era necesario validarlo y lo logramos de forma exitosa.

Asimismo, en esta etapa entramos al tema de analítica de datos. Sin duda desde la fase inicial de MVP establecimos los puntos de contacto de los clientes a lo largo de todo el viaje de compra y los datos que serían necesarios y posibles de recolectar de ellos para poder realizar la transacción de forma satisfactoria. En la fase anterior estábamos trabajando con un grupo de control, poca muestra y contacto directo, pero llegados a este punto se abrió un poco más el panorama y empezamos a registrar transacciones de manera más abundante. Siendo así fue necesario adentrarnos en esta recolección de datos para poder establecer algunas iniciativas de analítica.

datlas_mx_ecommerce_analytics

Uno de los ejemplos que incluso mencionamos en la columna anterior es la parte de análisis de categorías. Tomando este caso lo que hicimos fue, establecer dentro del escalamiento del catalogo de productos las categorías que iban a regir el orden de dicho catálogo, es decir, si fuera ropa seria algo así como: ropa de hombre, ropa de mujer, ropa de niños, ropa de bebe. De la misma manera establecimos alrededor de 5 categorías para los productos del negocio de Patricio, de tal suerte que podíamos tener lectura desde la plataforma de e-commerce y Google analytics, sobre el tráfico de personas que estaba viendo e interactuando dentro de cada categoría, así como la cantidad de transacciones de productos que pertenecían a esa misma categoría. Con todo esto, fuimos capaces de descifrar cuales eran las categorías más “importantes” para los clientes en línea y se generaron mejoras como: posicionamiento dentro del anaquel en digital, mejores incentivos de compra, recomendaciones o sugerencias dentro de esa categoría, etc.

Lanzamiento oficial, expansión y gestión continua

Finalmente, ya teníamos una tienda en línea funcional, con un catalogo de productos robusto, un anaquel digital atractivo y un sistema de recolección de datos capaz de generar analíticos e inteligencia accionable para capitalización directa sobre ventas. Llegados a este punto las actividades claves fueron ampliar la cobertura geográfica de servicio, es decir, integrar entregas en nuevos municipios, estados, etc. Y comenzar a gestionar la creación del CRM (Customer Relationship Manager, por sus siglas en inglés). Este último punto resulta ser clave para el crecimiento del negocio en línea ya que, haciendo la analogía con el mundo físico, el CRM es lo que te permite conocer a tu cliente y entender detalles como ¿de dónde vino? ¿qué ha comprado? ¿con qué frecuencia? Etc. Detalles que al final del día son importantes para generar estrategias de recomendación, descuentos o incluso nuevos lanzamientos. Pero de momento no tocaremos el tema ya que justo tendremos una columna completa especialmente dedicada a la construcción y gestión de CRM muy pronto, mantente atento para que no te la pierdas.

Finalmente, si estas incursionando en el mundo digital o ya estas dentro de él no olvides que tenemos el Data Playbook Vol. II una guía para construir una estrategia de big data para tu negocio. ¡Obtenlo completamente GRATIS en nuestro Marketplace!

Datlas_Playbook_prelaunch

No olvides seguirnos en redes sociales y contarnos tu experiencia

@DatlasMX

Clustering para generar segmentos de mercado – Datlas Research

Como lo platicamos en “La historia de las tecnologías de información computacional” desde que el poder de cómputo ha incrementado hemos buscado formas de generar análisis más completos y asertivos para nuestros casos de estudio.

Datlas_barra_suscribir

Uno de ellos es el análisis de clúster que es una técnica estadística multivariante cuyo objetivo es formar grupos de elementos homogéneos o similares que al mismo tiempo sean heterogéneos o distintos entre sí. ¿En español y negocios? Hay casos en donde generar una estrategia para cada cliente puede ser costoso, pero si agrupamos a estos clientes en segmentos podemos impactar a grupos similares con estrategias puntuales.

En esta columna explicaremos un caso de ejemplo de clustering para generar segmentos de clientes. Los datos que revisaremos vienen de encuestas levantadas con visitantes al festival Luztopia. (Si te interesan sólo los resultados favor de pasar al final de la columna). El objetivo identificar segmentos de asistentes específicos al festival para la ideación y generación de mejores promociones el próximo año.

El pase de diapositivas requiere JavaScript.

Para ser justos hay que explicar que existen distintos tipos de análisis para generar estas agrupaciones o clústers. Los dos grandes grupos son: No jerárquicos y jerárquicos. En este caso en particular usaremos uno de los métodos  no jerarquicos. Lo que quiere decir que un clúster generado no depende de otro clúster, son independientes.  Dentro de los no  jerarquicos utilizaremos los asociados al algoritmo “k-means”, que está dentro de la familia de los no jerárquicos. Este algoritmo usa de inicio medias aribtrarias y, mediante pruebas sucesivas, va ajustando el valor de la misma. La idea es no ponernos más técnicos, pero si te interesa conocer más a detalle te recomendamos revisar la p.23 de este documento. En pocas palabras k-means nos apoyará ensamblando clústers de perfiles que sean similares entre sí, pero a la vez diferentes entre cada grupo.

BASE DE DATOS

La información que revisaremos son un par de encuestas que incluyen datos como los siguientes:

Datlas_blog_clustering2

En concreto usaremos para armar los clústers las variables numéricas, tales como: Edad de personas que respondieron, tamaño de su grupo, cantidad de menores de 18 en el grupo, gasto en cena, gasto en productos dentro del recorrido, gasto total estimado y tiempo de estancia en el evento. Para quienes han analizado datos similares ya se podrán imaginar el tipo de respuestas que podremos generar: ¿Cuáles son los perfiles que más visitan? ¿Qué perfiles gastan más en su recorrido? ¿Habrá relación entre los visitantes que van con niños y su compra en cenas? ¿Extender el recorrido en tiempo haría que las personas consuman más cenas? Entre otros.

Este es el tipo de respuestas que generamos en los reportes que trabajamos en Datlas, sin embargo para fines de esta columna nos ubicaremos en el ejercicio de clústers buscando generar segmentos para los cuales podamos generar nuevas promociones.

MÉTODO

Un paso que algunos analistas descuidan es el proceso de “normalizar” datos. Una vez que empiezas por el camino de #machinelearning va a ser un paso que será muy común.  “Escalar” es un proceso de redimensión de variables para que estas se encuentren entre rangos de -5 a 5, por ejemplo. Este proceso ayuda a centrar los datos alrededor de la media.  Estos métodos tienen área de oportunidad cuando tenemos anomalías, pero en este caso dado la distribución de las variables hacía sentido escalar. A continuación un contraste del proceso.

El pase de diapositivas requiere JavaScript.

A partir de este proceso generamos una matriz de distancia entre las variables. Esto nos indica en rojo los registros de variables, en este caso visitantes a Luztopia, que son más distintos en perfiles y hábitos de consumo. Aunque realmente es complicado leerlo así. Por lo mismo es un paso intermedio

Datlas_matriz_Distancia_Cluster

Un siguiente paso es hacer una primera iteración de clústers. En esta ocasión supervisamos al algoritmo para que nos entregue de regreso 4 clústers. Cada punto que vemos en la gráfica es una encuesta respondida por la muestra de visitantes que estamos evaluando. En el clúster 1, por ejemplo, pudieran ser todos los visitantes que asistieron con niños a Luztopia. Eso genera una diferenciación tan crítica, que separa este clúster de los demás. Sin embargo los otros clústers se traslapan.

Datlas_ClusterPlot_4

Lo ideal es que el traslape sea mínimo o nulo. En este sentido podemos retar la cantidad de clústers que le pedimos al sistema generar. Para esto podemos usar un proceso que nos recomienda la cantidad de clúster óptimos.

Datlas_optimal_Clusters

De acuerdo a este proceso 2 son los números ideales y óptimos de clústers. También lo serían 5 ó 6, pero en realidad manejar estrategias de negocio para tantos grupos puede ser complicado. Por esta razón seleccionamos 2 como caso de uso.

Datlas_ClusterPlot_2

Finalmente, para poner en práctica nuevas estrategias de negocios, podemos identificar cuáles son las medias de cada una de las variables, cómo contrastan los clústers y algo que recomendamos es generar “avatars” o “buyers personas” que permitan comunicar hacia dentro de la organización la manera de trabajar.

TESTIMONIO

Hasta aqui la columna de hoy. Te compartimos finalmente el testimonio de nuestra colaboración con el “Clúster de Turismo NL” donde usamos técnicas como estas para generar distintos entendimientos del festival Luztopia. Además puedes revisar el podcast que grabamos con ellos si te interesa “Analitica en sector Turismo”.

 

Si te interesa conocer y contratar este tipo de servicios de “Clustering sobre resultados de encuestas o investigaciones para generar segmentos y seleccionar los mejores mensajes para tu mercado” te recomendamos visitar nuestro marketplace y solicitar una llamada de orientación. Contáctanos también en ventas@datlas.mx

Datlas_barra_suscribir

Saludos

Equipo @DatlasMX

– Keep it weird-

 

5 pasos para aprovechar los datos de tus puntos de venta y mejorar tus resultados

Hace apenas un par de años comenzamos a escuchar el famoso concepto de transformación digital en las empresas. Este concepto hace referencia al aprovechamiento y la inserción de tecnología y digitalización dentro de los procesos de negocios. Uno de los pilares más importantes dentro de esta transformación digital es el análisis de datos. En un contexto en donde los datos y la información son lo más abundante, la necesidad de aprovechar este gran bagaje de información para la toma de decisiones de negocios se ha vuelto crucial. En esta columna vamos a hablar de un sencillo proceso de 5 pasos con el que hemos apoyado a los negocios a aprovechar la generación de datos desde sus puntos de ventas para capitalizar accionables comerciales y operativos que han impactado directamente sus resultados de manera positiva.

free_Suscriber

Para comenzar es necesario un poco de contexto. Cuando hablamos de aprovechar la generación de datos existe un componente importante que responde a las condiciones actuales de los negocios: el volumen. Mientras hace unas décadas la disponibilidad de información se limitaba a un par de libros contables, hoy las empresas tienen la capacidad de consumir información externa y, sobre todo, de obtener y generar una cantidad sin precedentes de variables respecto a sus transacciones, clientes y procesos. Es precisamente aquí en donde se introduce el famoso concepto de Big Data. Sin duda hemos hablado de este concepto en entradas anteriores, pero nos gustaría citar una frase del CEO de BBVA Analytics, Fabien Girardin, que sintetiza muy bien las ventajas de este concepto diciendo: “Lo que es nuevo con el Big Data, es la cantidad de datos que nos permite entender el mundo de mejor manera, y cuando digo ‘el mundo’ me refiero a los clientes, empresas, y también como funciona la propia organización. Eso nos permite realmente medir y entender los procesos, intentar automatizarlos, y ayudar a la toma de decisiones de manera nueva”.

Ahora bien, veamos como es que estas técnicas de aprovechamiento de grandes cantidades de información se pueden capitalizar para tu negocio o la empresa donde laboras. La receta consta de 5 sencillos pasos que se ilustran de una manera magistral en la siguiente imagen:

datlas_mx_blog_data_to_wisdom

Paso #1: Los datos

La primera etapa tiene que ver precisamente con la materia prima, es decir, con los datos. Este es el punto de partida para poder derivar verdadera inteligencia. Al hablar de datos hay que tener claros dos puntos importantes: el primero de ellos es responder la pregunta ¿dónde se esconden los datos? Muchos de nuestros clientes al principio aseguran que la falta de análisis dentro de su negocio tiene su origen en la “falta de datos”, pero esto no es necesariamente real. Los puntos de venta son por excelencia grandes generadores de datos. Sin duda no son los únicos, por lo que es importante mapear el viaje completo del usuario para identificar los puntos de interacción (touch points, en inglés) en los que el cliente interactúa con el negocio y en donde podemos estar capturando información.

Tomemos como ejemplo una tienda en línea, que han visto una evolución significativa en estas circunstancias de cuarentena. Para hacerlo todavía más simple pensemos en una tienda en línea que vende artículos para bebes. En este caso, el usuario tiene un viaje que podemos simplificar: el usuario conoce la marca/productos, entra a la página web, interactúa con el catalogo de productos, selecciona los artículos que va a comprar, realiza la transacción y sale contento(a) a esperar la entrega de los artículos que adquirió. Tan solo en este simple “viaje” podemos encontrar que el punto de venta ha logrado capturar datos como: edad, sexo, email y teléfono del cliente; el canal de procedencia, el tiempo que dedico a cada sección de la página, donde hizo click, los productos que estuvo evaluando, los filtros que utilizó, los artículos relacionados directamente a aquellos que incluyó en su carrito de compra, el ticket promedio, el total de la transacción, la dirección a la que pidió que se enviaran sus productos y la información de su método de pago, entre otros muchos detalles.

datlas_mx_blog_data_sources_ecommerce

Ahora bien, la cantidad de datos es sin duda impresionante y nos permite realizar análisis más nutritivos, pero es importante cuidar el segundo punto que citábamos arriba: la estructura de los datos. ¿A qué nos referimos con la estructura? Imagina un negocio hace 50 años que tuviera cada transacción anotada en una libreta y tuviera que ponerse a buscar en los miles de libretas de los años pasados para encontrar cuantas veces el Sr. Godínez (su cliente más frecuente) ha comprado en los últimos 3 años. Me canse tan solo de escribirlo. He aquí el segundo punto medular cuando hablamos de datos. Es de suma importancia cuidar que los datos se almacenen con una cierta estructura que permita identificarlos, como el caso del cliente, con un identificador o un folio. Asimismo, es importante cuidar que las estructuras habiliten la conexión entre los datos generados desde distintos procesos o puntos de contacto del negocio con el cliente. Un ejemplo claro en el caso de la tienda en línea para bebes sería tener un catalogo de productos con SKUs y una base de datos de pedidos que integren los distintos SKUs que cada cliente incluye en sus pedidos. Y todo esto ¿para qué? Justo vamos a verlo en los siguientes pasos.

Paso #2: De datos a información (la transformación)

Una vez identificadas las fuentes de datos, sobre todo aquellos generados por el punto de ventas, pasamos a transformar esos datos en información. Cuando hablamos de transformar estos datos nos referimos a tomar la materia prima y comenzar a darle forma, comenzar a construir y descifrar la historia detrás de esos datos para poder derivar la inteligencia. Es justo en esta etapa cuando tomamos, por ejemplo, todos los datos referentes a los clientes y comenzamos a construir los perfiles o avatares. Con los datos de los productos podemos generar canastas, catálogos, familias o categorías y/o agrupaciones. Con los datos transaccionales se pueden generar reportes de resultados e indicadores. Lo importante en esta etapa es poder apalancar la estructura de datos anteriormente establecida para que la transformación de esos datos en información se pueda dar de una manera sistemática y automatizada.

datlas_mx_blog_data_information_ecommerce

Paso #3: Interconectar (integraciones)

Esta etapa se distingue por integrar a la narrativa, a la historia, las diferentes fuentes de información. Retomando el ejemplo de la tienda en línea para bebes y teniendo en cuenta que de la fase anterior obtuvimos perfiles de clientes, catálogos de productos y resultados transaccionales, podemos generar una narrativa completa en esta sección. Imaginemos que de la información anterior seleccionamos uno de los perfiles de cliente formado, ejemplo: Perfil A. Una vez seleccionado el perfil comenzamos a cruzar la información con los catálogos de productos y obtenemos una lectura de los productos más afines al perfil de cliente seleccionado. Todo esto a su vez lo integramos con la información transaccional de tal suerte que podemos construir una narrativa capaz de contar una historia como esta: “El perfil A representa a clientes mujeres de 28 a 34 años, que principalmente llegan desde redes sociales como Instagram, interesadas en productos consumibles como pañales y leche en polvo, generalmente comprando 3 artículos por pedido con un ticket promedio de $890 MXN”

datlas_mx_blog_ecommerce_customer_profile

Ahora bien, lo más importante en este punto no es poder contar la historia sino tomar esa historia para generar las preguntas o hipótesis adecuadas, es decir, tomando la narrativa del ejemplo anterior un buen análisis parte de preguntarse cosas como ¿existe alguna relación entre su edad y la afinidad por productos de marcas de alta gama? ¿Qué tan probable es que este perfil compre artículos que no sean propiamente para su bebe (regalos u obsequios)?

Paso #4: Insights (analíticos)

En esta etapa es importante partir de la definición de este famoso concepto de insights. Si bien es un término en inglés que difícilmente tiene una traducción directa al español, lo claro es que se puede definir como “el entendimiento de una causa específica y su efecto dentro de un contexto particular. Entender la naturaleza interna de las relaciones”. Basados en esta definición, este cuarto paso justo se trata de responder las preguntas planteadas en la etapa 3 y descifrar las causas y efectos de esas relaciones. Retomando el ejemplo anterior, para el caso de la relación entre edad y afinidad de marcas, podemos contarles que este cliente pudo analizar y concluir que las mamás jóvenes son más afines a marcas de alta gama porque su falta de experiencia prioriza la novedad y la mercadotecnia de las marcas de alta gama, mientras que las madres con mayor experiencia ya tienen conocimiento sobre las marcas que realmente son funcionales y priorizan su decisión de compra basadas en los atributos de confianza y usabilidad que otras marcas, no necesariamente de alta gama, les pueden proveer.

datlas_mx_blog_ecommerce_analytics

Paso #5: Inteligencia (accionables)

Después del esfuerzo de las cuatro etapas anteriores llegamos a la parte que realmente impacta los resultados: las acciones. El catalizador de los análisis que las etapas anteriores pudieron proveer llega a su culmen cuando los datos, la información, la historia, las preguntas y las respuestas se convierten en lo que conocemos como inteligencia, es decir, acciones concretas que nos ayuden a influir sobre los resultados que hemos estado analizando. Tomemos el ejemplo citado, una vez que desciframos que hay un perfil de cliente que responde a ciertos atributos podemos generar estrategias de comunicación segmentadas con mensajes afines a ese tipo de características sobre los productos, por otro lado, se pueden apalancar cupones de descuentos que ayuden a aumentar las conversiones en ciertos días de la semana o promociones especiales en los meses más críticos, etc. Con uno de nuestros clientes incluso logramos capitalizar información de entorno para poder identificar geográficamente aquellas zonas en donde se concentraban los clientes potenciales del negocio para poder accionar campañas enfocadas en esas zonas y optimizar los presupuestos promocionales.

En esta etapa es importante recordar dos cosas: la primera es que la inteligencia, como los datos, debe almacenarse de una manera estructurada y debe comunicarse a todos los grupos de interés para que se pueda capitalizar su valor en un impacto positivo a los resultados. La segunda, íntimamente relacionada a esta, es que el proceso es iterativo, es decir, nunca acaba. Al igual que la captura de datos, este proceso debe estar “vivo” debe nutrirse de nuevos datos y continuar abonando a la inteligencia, mejorar los accionables y seguir buscando nuevas fuentes de generación de datos, incluso externas a la empresa, para poder impactar los resultados de manera positiva.

datlas_mx_blog_data_business_intelligence

Finalmente, esta es una forma sencilla en la que puedes obtener valor de los datos de tu negocio. No olvides que a pesar de enumerar 5 sencillos pasos cada uno de ellos tiene una complejidad dentro de si mismo y en Datlas estamos preparados para apoyarte en cada una de las etapas con metodologías y tecnologías que son capaces de adaptarse a cualquier industria y tamaño de negocio. Cuéntanos como estas aprovechando los datos de tus puntos de venta o contáctanos para comenzar a ayudarte ¡hoy mismo!

@DatlasMX