Archivo de la categoría: big data

¿Cómo analizar a la competencia usando mapas? – Datlas Casos de Uso

Una de las claves del éxito de los negocios es la ubicación, como ya hemos hablado, pero para ubicar un negocio hay ciertos aspectos que la mayoría de las empresas, sin importar su giro o sector, toman en cuenta para realizar un análisis y seleccionar el mejor punto. Algunas de estas variables son:

  1. El producto/servicio que a vender (giro/sector)
  2. Competencia (directa, indirecta, sustitutos etc.)
  3. Mercado meta ideal (perfil del consumidor)
  4. Características de la ubicación y el entorno (historia, estructura, demografía, tráfico, accesibilidad, estacionamiento, etc.)
  5. Negocios en la zona (complementadores, etc.)
  6. Aspectos legales (uso de suelo, reglamentación, lineamientos, etc.)
  7. Aspectos financieros (costos, gastos, mantenimientos, etc.)

free_Suscriber

Sin duda algunos de estos puntos, en un inicio, los define el emprendedor/empresario como, por ejemplo: el mercado meta ideal o perfil del consumidor. Mientras que otros provienen de un análisis de mercado y entorno respecto a la ubicación analizada. En esta entrada nos vamos a enfocar en el análisis de competencia a través de nuestras plataformas de Mapas.

Para ello vamos a utilizar el caso de Andrea, una joven emprendedora con un concepto de gimnasio que mezclaba la parte tradicional de las maquinas y las pesas con toda esta tendencia del baile y las nuevas metodologías fitness. Andrea estaba por abrir su segunda sucursal en Nuevo León. Reconociendo que este mercado estaba teniendo un auge y que los competidores nacían de forma rápida y con facilidad, decidió enfocarse en analizar a la competencia alrededor de esta nueva oportunidad de ubicación. Así que ¿Cómo lo hizo?

En primer lugar Andrea entró al Marketplace de Datlas y adquirió su Mapa Premium para Nuevo León.

Quédate hasta el final y descubre el código de descuento para adquirir hoy mismo tu Mapa Premium para cualquiera de las geografías disponibles

datlas_mx_marketplace_mapa_premium

Una vez adquirido su mapa, entró directamente en la página web de Datlas (www.datlas.mx) y se autentificó como usuaria.

El pase de diapositivas requiere JavaScript.

Una vez dentro de su panel personalizado, se fue a la sección de Mapas y selecciono su Mapa Premium para Nuevo León.

datlas_mx_panel_personalizado

Una vez dentro del mapa, utilizo la barra de búsqueda por dirección para localizar la ubicación que estaba evaluando.

El pase de diapositivas requiere JavaScript.

En cuanto localizó la ubicación, Andrea hizo uso de una herramienta llamada “Consulta Establecimiento” que se encuentra justo en la cuarta posición de la barra lateral derecha, debajo de la herramienta de búsqueda específica y justo arriba de la herramienta de medición de distancia.

free_Suscriber

Haciendo uso de esta herramienta Andrea, y todos nuestros usuarios, pueden escribir una palabra clave, en este caso, por ejemplo: gimnasio y el sistema realiza una búsqueda de esa palabra clave en las bases de datos de negocios para obtener como resultado todos aquellos establecimientos que tengan esta palabra dentro de su nombre comercial y/o de su razón social.

En este caso, Andrea al poner gimnasio, obtuvo estos resultados:

El pase de diapositivas requiere JavaScript.

De igual forma, se pueden hacer consultas con palabras claves parecidas como, en este caso, “gym” y obtener también resultados:

datlas_mx_mapa_premium_nl_consulta_gym

De esta forma, Andrea pudo observar rápidamente el nivel de competencia que existía en el entorno y combinar las distintas herramientas de las que hemos estado hablando en entradas anteriores para complementar su análisis con una segmentación y prospección de cliente.

Finalmente, no olvides que tu también puedes empezar a analizar a tu competencia hoy mismo adquiriendo tu Mapa Premium para cualquiera de nuestras geografías disponibles, aprovecha el cupón BLOG50 para obtener un 50% de descuento (válido por tiempo limitado).

¡Visita nuestro Martketplace y aprovecha esta gran promoción!

 

También te invitamos a contarnos ¿qué reto enfrenta tu negocio actualmente? para poder sugerirte y escribir algunas formas de solución con nuestras plataformas. Escríbenos a ventas@datlas.mx o en nuestras redes sociales.

@DatlasMX

 

 

CORONAVIRUS PT. 2/2 – CONSTRUYENDO UN MODELO DE RESPUESTA INMEDIATA CON DATOS GEOESPACIALES (DATLAS RESEARCH)

Si quieres visualizar esta plataforma revisa el video aqui. Para acceder directamente a la plataforma de la que hablamos en este blog escríbenos tus motivos a direccion@datlas.mx .

Esta es la segunda parte de la serie de blogs del #COVID-19. Puedes encontrar el primer capítulo en: El efecto dominó de una pandemia en la economía regional. Vale la pena que le eches un  vistazo antes, para entender mejor el riesgo de no tomar las medidas adecuadas en épocas del Coronavirus.

Datlas_barra_suscribir

Lo que sigue,inspirados en la herramienta GOTHAM de la empresa PALANTIR utilizada en el Huracán Florence en el 2018 para desplegar equipos de rescate en las zonas más marginadas del Norte y Sur-Carolina en esta columna generaremos un postulado de cómo podríamos construir un modelo de respuesta inmediata para México. Específicamente utilizando datos de Nuevo León.

Usaremos el modelo Datlas como ejemplo

Datlas_metodo_laboratoriodedatos

Puedes leer más de esta metodología en este blog.

Diagnóstico del problema y objetivo

Un modelo de respuesta inmediata, en el contexto de datos geo-espaciales, contextualiza el entorno y la situación de estudio (En este caso el COVID) para enfocar la atención hacia las ubicaciones más vulnerables en caso de una catástrofe. En situaciones donde el tiempo y la dispersión juegan un rol crítico, es importante tener a la mano herramientas que soporten la labor de enfoque hacia la infraestructura y cuerpos de rescate.

El objetivo de la investigación será identificar en un plano geográfico  los puntos de concentración de personas más vulnerables para que en caso de una catástrofe sanitaria tengamos más claridad hacia los puntos de despliegue de equipos de rescate.

Datlas_Blog_Modelorescate_Covid

Criterio y extracción de datos

Hemos estado revisando que las poblaciones más vulnerables en el COVID-19 son primeramente mayores a 60 años. Sumado a esto las viviendas en niveles socieconómicos bajos tendrían más restricciones de acceder a recursos para protegerse por su cuenta. En muchos programas sociales se utiliza el índice de marginación nacional de la CONAPO (véase al final en fuentes) como medida de vulnerabilidad. Esto ya que representa una medida-resumen que permite diferenciar entidades federativas y municipios de acuerdo con las carencias que padece la población, como resultado de la falta de acceso a la educación, la residencia en viviendas inadecuadas, la percepción de ingresos monetarios insuficientes y las relacionadas con la residencia en localidades pequeñas (CONAPO, 2018).

Otro tema que hace sentido contemplar es la cantidad de ubicaciones de servicios de salud como clínicas, laboratorios, farmacias, hospitales y similares que pudieran ponderar la vulnerabilidad de estos grupos. Usaremos datos del DENUE INEGI, así como Google places para corroborar estas ubicaciones.

Integración y clasificación de datos

Clasificamos las variables en distintos grupos:

  • Personas mayores a 60 años (Dado que el virus es más letal en este grupo de edad)
  • Indice de marginación (Tendrían mayores restricciones para cuidarse por su propia cuenta)
  • Promedio de habitantes por vivienda (Mayor indice de propagación y contagio casero)
  • Población Total (Potencialmente, los cuadros de la ciudad donde una actividad de rescate impactaría más personas)
  • NSE preponderante (Buscaríamos priorizar NSE bajos, dado su vulnerabilidad)
  • Servicios de Salud (Farmacias, clínicas, asilos, hospitales y similares)

En este caso, el orden de las clasificaciones representa lo que teóricamente puede representar un mayor enfoque para grupos  vulnerables. Es decir, estos pudieran ser criterios de enfoque para equipos de rescate

Datlas_Blog_Modelorescate_Covid_2

Modelaje y entrenamiento

Al no ser especialistas en temas de salud, lo más correcto es compartir este mapa con especialistas que puedan darnos más sensibilidad de campo sobre qué otras variables contemplar o cuál debería ser la prioridad. A partir de esto podríamos entrenar un modelo más especializado.

Para fines de este ejercicio y dándonos un poco de licencia para soñar, podríamos imaginar que los efectos de las variables en una ecuación podrían ser sumados y otros multiplicados. Algunos sería relevante contemplarlos con crecimiento exponencial. Los matemáticos son los encargados de esto. Cuando nosotros generamos modelos comenzamos de lo más básico y, de ser necesario, en cada etapa del proceso elevamos un poco el modelo de complejidad.

Simplificando, una vez estandarizadas las variables, podríamos ir modelando un indicador que agregue el efecto de distintas variables

Datlas_Blog_Modelorescate_Covid_3

Datlas_barra_suscribir

Visualización

¿Cuál sería el efecto final? ¿Cómo se vería? La mejor forma de enfocar en este tipo de mapas es con mapas de calor. Eso nos permitiría identificar el efecto de una serie de variables de manera inmediata.

Ver video: https://youtu.be/4OIFN86nz5U

 

Reporte de acciones a tomar

  • Colaborar con expertos regionales para avanzar en establecer protocolos de rescate y  árboles de decisión de priorización en cuestión de atención sanitaria
  • Destacar zonas específicas para que se realicen revisiones periódicas, mediciones de temperatura, entrevistas a miembros de hogares en las manzanas indicadas y similares
  • Acercar infraestructura médica temporal de apoyo en caso de que el Covid crezca a una fase 2 ó 3
  • Ceder un contacto directo de atención para esta zona específica, sobre todo cuando son mayores de 60 años
  • Generar un plan de mediano plazo para intervenir esta zona, sobre todo ante los efectos económicos negativos que probablemente ocurran en un par de meses

Futuras investigaciones

En futuras investigaciones y con datos como los códigos postales o polígonos donde hay más infectados podríamos asociar correlaciones y causalidades para validar que estos efectos se cumplan. Conocer la capacidad de hospitales en términos de camillas, especialistas, respiradores, entre otros sería de mucha utilidad.También los hospitales y laboratorios que sí están realizando pruebas o tratamientos de COVID.

Creo que ya hay demasiados mapas sobre la evolución del COVID19. Hay que motivar a pensar en los siguientes pasos: Los efectos económicos y sociales.  Esperamos que estas 2 columnas de blogs apoyen a continuar la investigación en este sentido.

PRUEBA EL MAPA

Solicita con un escrito de motivos a direccion@datlas.mx , gracias por tu participación recuerda compartir la columna y dejar tu opinion.

Fuentes:

Inteligencia artificial y big data para combatir el coronavirus (COVID-19)

El día de ayer la Organización Mundial de la Salud (OMS) declaró como pandemia el coronavirus o COVID-19, por su nombre oficial. ¿Qué significa esto? Una enfermedad entra en la categoría de pandemia cuando cumple cualquiera de las siguientes condiciones: se extiende a muchos países o ataca a casi todos los individuos de una localidad o región. En este caso, la propagación que ha tenido este virus desde el continente asiático hasta Europa y América le ha conferido la categoría de pandemia. Ahora bien, los coronavirus son una extensa familia de virus que pueden causar enfermedades tanto en animales como en humanos. En los humanos, se sabe que varios coronavirus causan infecciones respiratorias que pueden ir desde el resfriado común hasta enfermedades más graves como el síndrome respiratorio de Oriente Medio (MERS) y el síndrome respiratorio agudo severo (SRAS). La COVID-19 es la enfermedad infecciosa causada por el coronavirus que se ha descubierto más recientemente. Tanto el nuevo virus como la enfermedad eran desconocidos antes de que estallara el brote en Wuhan (China) en diciembre de 2019. Si bien esta no es una nota médica te invitamos a consultar los síntomas, las maneras de prevenir y protegerte de este virus en el sitio oficial de la Organización Mundial de la Salud (WHO, por sus siglas en inglés).

free_Suscriber

Sin duda la industria de la salud no ha sido exenta de vivir y beneficiarse de la reciente transformación digital y la innovación tecnológica. Para este caso puntual del coronavirus queremos destacar el papel que han tenido el big data y la inteligencia artificial en la lucha, prevención y reacción ante esta pandemia. En cuanto se confirmó el brote en Wuhan el gobierno chino comenzó a desplegar una estrategia de prevención y control basado en los sistemas de inteligencia y la tecnología que tanto han distinguido al país en las últimas décadas, así como apalancado en su sistema de gobierno que, para muchos expertos, en este caso fue bastante útil y eficaz para la capacidad de reacción que tuvo el país.

datlas_china_coronavirus_covid-19_2020

Por si no lo sabías, el gobierno de China ha instalado un sistema masivo de vigilancia para sus ciudadanos que va desde cámaras hasta una intervención directa en smartphones, rastreo de operaciones financieras y ubicación en tiempo real. Fue así como el gigante asiático comenzó a luchar contra el COVID-19. Lo primero en llegar fueron las cámaras térmicas. Como salido de una película de guerra o de invasión alienígena, empezaron a utilizar las cámaras para detectar la temperatura térmica de las personas, ya que uno de los principales síntomas del COVID-19 es el alza en la temperatura. Mediante inteligencia artificial, aún vigilan la temperatura corporal de los ciudadanos.

datlas_china_coronavirus_covid-19_camaras_termicas

El siguiente gran paso fue desarrollar aplicaciones para los smartphones que, utilizando un esquema de semáforo clasifican a los ciudadanos hasta condicionarles qué hacer y con quién relacionarse. En esta iniciativa destacaba la cooperación del gigante del comercio online Alibaba, que contribuyó a desarrollarla. La aplicación era capaz de identificar a las personas según tres colores: el verde, para quien puede moverse con libertad; el amarillo, para quien había estado en una zona con peligro de infección (razón por la que debía permanecer siete días en cuarentena); y el rojo para quien hubiera estado en contacto con zonas de alta afectación del COVID-19 (lo que obliga a permanecer catorce días en cuarentena).

Pero esta innovación, sin embargo, no fue la última. Porque si el semáforo móvil clasificaba a los ciudadanos de cara a su control peatonal en la calle, hubo una aplicación posterior que profundizó aún más. Y es que el gobierno y la Corporación de Tecnología Electrónica de China, respaldados por datos de las autoridades de salud y transporte –según publicó la agencia estatal Xinhua–, desarrolló una segunda app para permitir rastrear a las personas y alertar sobre si han tenido un “contacto cercano con alguien infectado”. Una aplicación que explotaba el big data en manos del gobierno, y que es accesible apenas con escanear un código QR en las populares plataformas chinas WeChat o Alipay. El único requisito es enviar el nombre, el número de teléfono y el número de identificación y, tras cruzar los diferentes datos a los que tiene acceso, ya puede advertir si se camina por un lugar con peligro de ser infectado, o si se ha viajado cerca de personas infectadas, también si se trata de miembros de la familia o de pasajeros y tripulación de un mismo tren o avión. Es más, incluso permite buscar números de identificación diferentes, y saber si son un riesgo de salud.

free_Suscriber

Sin duda alguna, estas últimas medidas pueden ser controversiales ya que son obligatorias en algunas ciudades chinas mientras que en otras están disponibles a voluntad. Lo que no se puede negar es que estas medidas han sido eficaces en el corto plazo, pero presentan un riesgo muy delicado. “La extrapolación de estas apps de control sanitario al incipiente sistema de crédito social puede provocar, además, que algunos colectivos sean marginados y aislados socialmente. Y ello se añade a un sistema masivo de vigilancia que, en base a lo detectado por cámaras, permite o no acceder a determinados medios de transporte, o tener prioridad en los servicios”, explica Antoni Gutiérrez-Rubí, experto en tecnología y política. Lo que se añade a la conocida opacidad informativa del gobierno de China sobre su alcance.

Finalmente, debemos estar atentos al desarrollo de esta pandemia, tomar en cuenta las medidas precautorias y seguir atentos a la forma en la que podemos adoptar algunas de estas tecnologías en favor no solo de la detección de posible infección sino en la cura definitiva de la misma.

Compártenos tu opinión y mantente atento a noticias como estas en nuestras redes sociales

@DatlasMX

¿Cómo convertirte en analista estrella? Usando mapas – Datlas Casos de Uso

Hemos estado relatando los distintos casos de uso de nuestros clientes emprendedores y empresarios, pero hay una clase de clientes de los que no hemos platicado aún y es momento de hacerlo ya que ellos son la razón principal de que Datlas haya podido llegar a los grandes corporativos. En esta ocasión les contaremos la historia de Paulina, una analista junior dentro de un gran corporativo de bienes raíces con presencia nacional y oficinas centrales en Ciudad de México. Pau se dedica a realizar análisis y presentar reportes al equipo de desarrollo, con información relevante para evaluar la posibilidad de construir sobre un terreno u otro, comparando entre varias opciones. Antes de que Pau conociera Datlas su dinámica de trabajo consistía en consultar información de alrededor de 5 fuentes distintas, extraer dichos datos, sacar pantallazos de distintos sitios web, concentrar todo en una presentación y enviarla al equipo. Este proceso le tomaba alrededor de 4 horas para poder completar un solo análisis. Su entregable consistía en una sola lamina de presentación, con una imagen de la ubicación y una tabla resumen con datos como: población total, cantidad de hogares e ingreso promedio de la zona. Un buen día Paulina conoció a Datlas en una conferencia, entró a la página, probó el DEMO GRATIS de la plataforma de mapas y, a partir de ahí, todo cambio.

free_Suscriber

Su experiencia con el DEMO GRATIS le ayudó a darse cuenta de que el mapa Premium de Datlas integraba ya en una sola plataforma la información que ella capturaba de las 5 distintas fuentes. Asimismo, el hecho de partir desde una visualización de mapa le permitía a Pau mostrar una narrativa más homologada desde la imagen hasta el resumen de datos. Para una mejor explicación hagamos el caso rápidamente.

El paso #1 es entrar a tu panel personalizado y acceder al mapa Premium de CDMX. Para esto debiste haber adquirido tu licencia directamente en nuestro Marketplace. Quédate hasta el final y aprovecha el cupón de descuento que tenemos para ti.

datlas_panel_mapa_premium_cdmx

El paso #2 es localizar la ubicación que quieres analizar. En esta ocasión Paulina estaba analizando una zona a las afueras de la ciudad por lo que tuvo que hacer un ajuste antes de realizar su análisis. Entendiendo que su ubicación estaba del lado izquierdo a la carretera y que la carretera es una restricción u obstáculo de acceso, decidió medir la distancia paralela a la carretera para establecer un área rectangular para realizar su análisis.

El pase de diapositivas requiere JavaScript.

Una vez establecido el límite, procedemos al paso #3 que es realizar un análisis de la zona, en este caso mediante un área rectangular.

El pase de diapositivas requiere JavaScript.

Para este punto, Paulina ya tiene mucha más información que tan solo su par de variables iniciales. Es por ello que el paso #4 ella lo bautizó como: extraer hallazgos. De manera ilustrativa esta etapa se pudiera resumir de la siguiente manera:

datlas_mapa_premium_cdmx_hallazgos

Ahora bien, es importante denotar aquí que Paulina comenzó utilizando el mapa Premium dado que ella fue quien invirtió ($$$) de forma personal en la plataforma para poder probarla en su trabajo. Tras los primeros meses de uso Pau les mostró la plataforma a sus superiores y logró que el corporativo le aprobara contratar nuestra modalidad Socios, de la cual les hablamos en este blog anterior. Llegado este punto Pau fue capaz no solo de obtener los datos mostrados anteriormente sino nutrirlo con una capa de información especializada que, para su caso, fue la de nivel socioeconómico.

datlas_mapa_premium_cdmx_hallazgos_nse

Finalmente, el paso #5 para Pau es integrar estos hallazgos en una presentación ejecutiva para su equipo de desarrollo. De esta forma Paulina logró realizar durante las mismas 4 horas de trabajo, hasta 8 presentaciones completas que incluían más de 6 láminas cada una.

datlas_mapa_premium_cdmx_presentacion

De esta forma Pau logró convertirse no solo en la analista estrella dentro de su equipo y su compañía, sino que actualmente ha logrado obtener el cargo de gerencia de inteligencia de mercados capitalizando aún más los mapas, el sistema de reportes y hasta la consultoría en análisis de datos para seguir generando valor a su negocio, desde ahorro en tiempos, eficiencia en proceso, mejores tomas de decisiones, identificación de oportunidades y mucho más.

free_Suscriber

Tú también puedes convertirte en el analista estrella de tu organización. Entra ahora mismo a nuestro Marketplace y aprovecha el cupón BLOG20 para obtener un 20% de descuento en nuestros mapas Premium y Socios de CDMX o de cualquiera de nuestras geografías activas.

Mantente atento a nuestras redes porque pronto anunciaremos sorpresas alrededor de nuestros mapas.

@DatlasMX

¿Cómo definir la vocación de un terreno usando mapas? -Datlas Casos de Uso

Durante nuestros primeros años en el mercado, parecía bastante acertado e intuitivo resolver el reto de evaluar un cierto negocio en una ubicación dada. Conforme el conocimiento alrededor de los temas de analítica, datos y mapas se fue permeando en el mercado, llegó un punto en el que un cliente se atrevió a cuestionarnos “¿y si lo hacemos al revés?” y si… nosotros nos quedamos con la misma cara de duda que tienes tu, ¿Cómo que al revés? Lo que el buen Luis se atrevió a sugerir era darle una vuelta de 360 grados a la lógica de evaluar un cierto negocio en una ubicación dada y cambiarlo por evaluar una cierta ubicación para descifrar el mejor negocio para montar en ella. Así nació uno de los casos de éxitos más populares: definir la vocación de un terreno usando mapas. Recuerda que puedes ver otros casos de uso como prospección de clientes o segmentación de mercado en nuestros blogs pasados.

free_Suscriber

En esta ocasión vamos a repasar el caso de Luis, uno de nuestros clientes en Monterrey. Para ello utilizaremos el Mapa Premium de Nuevo León, que puedes encontrar disponible en nuestro Marketplace. Como ya sabes, puedes acceder desde tu panel en nuestra página web.

datlas_mapa_premium_NL_marketplace

Una vez dentro del mapa el paso #1 es encontrar la ubicación a analizar. El paso #2 es establecer el radio para análisis de entorno. Para definir este radio es importante establecer el alcance que tendría el negocio que podríamos poner ahí, es decir, aunque se trate de definir el mejor negocio hay que estar consciente de las restricciones. Por ejemplo, ¿realmente construiría un hotel 5 estrellas con alcance de hasta 10 kms a la redonda en esa ubicación? Suponiendo que el estudio así lo dijera. Claramente habrá personas que sí, otras que no. Sin duda depende del caso. En el caso de nuestro buen Luis era una ubicación en el centro de Monterrey, y se definió un radio de 1 kilómetro a la redonda para analizar el entorno. Para esto, usamos la herramienta de análisis que ya hemos utilizado en casos anteriores y generamos el reporte de resultados.

El pase de diapositivas requiere JavaScript.

 

El paso #3 es revisar la sección de negocios por categoría y definir si queremos enfocarnos en negocios con alta competencia (algunos dirán modelos de negocio ya probados) o con baja competencia (algunos dirán mayores oportunidades). En el caso de Luis, ellos definieron irse por aquellas categorías con la mayor cantidad de negocios. De ahí se definió un top 5 de oportunidades:

  • Servicios profesionales
  • Industria
  • Servicios de salud
  • Comercio
  • Restaurantes

datlas_mapa_premium_NL_resultados_datos

El paso #4 es comenzar a establecer gustos y preferencias sobre ese top 5 de opciones. En el caso de Luis, por ejemplo, ellos estaban 100% convencidos de que no pondrían un negocio industrial nunca. Asimismo, el tema comercial quedaba descartado porque la logística en la zona era bastante complicada y no querían batallar. Finalmente, ellos no querían operar el negocio de manera intensiva por lo que la opción de servicios profesionales quedo también descartada. Para este punto lograron acotar las opciones a dos: servicios de salud o restaurantes.
Siendo así les pareció atractivo evaluar la dinámica de tráfico peatonal en estas categorías y compararlas. Para esto activaron las capas de mapas de calor y compararon la categoría de restaurantes y salud.

El pase de diapositivas requiere JavaScript.

Con esto lograron seleccionar la opción de servicios de salud como la vocación del terreno. Pero hasta aquí, aún queda muy amplia la respuesta. Para poder definir que tipo de negocio dentro de los servicios de salud llegamos al paso #5 analizar el punto especifico. Para el caso de Luis hay 2 atributos relevantes que se analizaron en este paso: el primero, las dimensiones del terreno y el segundo los negocios del sector salud que estaban en su entorno.

Siendo así se concluyó que el terreno no alcanzaba para montar un hospital y, de hecho, en su entorno ya existía un hospital. Una vez identificado el hospital se trabajó puntualmente sobre opciones complementarias a un hospital, dentro del mismo sector salud, como opciones de negocios a establecer en la ubicación. Como seguramente se te ocurrió a ti también, efectivamente la opción fue una farmacia. Ahora bien, hasta aquí ya podríamos concluir como exitoso el ejercicio, pero… ¿y cómo acabo la historia de Luis?

El paso #6 y adicional para el caso de Luis fue el de mapear las principales marcas de farmacias y utilizar la herramienta de medición de distancia para saber a que distancia estaba la farmacia más cercana, de cada marca, con respecto al hospital. De esta forma identificó la oportunidad de establecer la farmacia de la marca X porque su sucursal más cercana al hospital era de hasta 2kms.

De esta forma es que Luis pudo descubrir la vocación del terreno usando mapas. Tu también puedes definir la vocación de tu terreno utilizando nuestros mapas. Visita www.datlas.mx/marketplace y aprovecha el cupón BLOG100 para obtener tu descuento especial en la compra de cualquiera de nuestros mapas.

free_Suscriber

Sin más, compartenos tu caso de uso en nuestras redes sociales y siguenos

@DatlasMX

 

¿Cómo encontrar clientes potenciales usando mapas? – Datlas Caso de Uso

Hace un par de años cuando le contábamos a la gente que hacíamos análisis de datos con mapas se nos quedaban viendo extrañados. Y es que la historia nos enseñó que el uso común de los mapas era para navegación, establecer rutas, indicar direcciones. Pero hoy en día la disponibilidad de datos geo referenciados (asociados a un punto geográfico, un punto en el mapa) nos ha permitido utilizar los mapas para realizar análisis más complejos, incluso de variables ajenas a temas de tráfico y navegación. En esta columna te vamos a explicar cómo puedes utilizar el mapa Premium de Datlas para encontrar nuevos prospectos, justo como lo han hecho nuestros clientes. Quédate hasta el final y obtén una sorpresa que te ayudará a adquirir tu licencia premium de inmediato e iniciar hoy mismo a prospectar nuevos clientes potenciales.

free_Suscriber

El proceso es muy sencillo, no importa si vendes productos o prestas servicios, el paso #1 es: la delimitación geográfica. Estamos seguros de que tu producto es único y tu servicio es inigualable, que pronto todo el mundo se va a pelear por adquirirlo, pero analizar todo un continente o un país te puede provocar dolores de cabeza. Es por ello que en DATLAS hemos dividido nuestros mapas por estados. Por lo tanto, debes elegir el estado en el que se encuentra la zona donde te quieres enfocar para encontrar a tus prospectos. Para ejemplificarlo de forma sencilla usaremos el caso de Carolina, una joven que vende repostería a través de redes sociales, principalmente en Monterrey. Ella estaba buscando expandir su mercado y comenzar a vender en San Pedro Garza García. Por lo tanto, la plataforma que vamos a utilizar para este ejercicio será el Mapa Premium del estado de Nuevo León, disponible en nuestro Marketplace.

datlas_marketplace_mapa_premium_NL

Una vez definida la geografía que vas a analizar, el paso #2 es: definir el perfil de tu cliente objetivo (o mercado meta). Si eres dueño o parte de una organización que tiene años operando, será mucho más sencillo ya que conoces las características generales de tus clientes actuales y con ello puedes establecer un perfil con ciertos atributos a buscar. Por otro lado, si eres un emprendedor que está iniciando su negocio definir el perfil del cliente objetivo será un ejercicio distinto, basado en el problema que resuelves y el tipo de solución que has diseñado. Para el caso de Carolina ella definió a su cliente objetivo como: mujeres entre los 24 y 31 años de edad, con estudios universitarios o superiores, que tuvieran una capacidad de pago de $1,000 MXN o más.

datlas_mkdo_meta_perfil

Una vez definida la geografía de enfoque y el perfil de cliente que buscas es momento de entrar en la plataforma. Si has tenido la oportunidad de probar nuestro DEMO seguro sabrás como navegar y que atributos están disponibles, si no es así te invitamos a suscribirte para tener conocimiento de algunas de las variables y herramientas que estaremos comentando.

Una vez dentro de la plataforma fácilmente podrás reconocer que los polígonos que aparecen al inicio son interactivos y que al dar click en ellos se revela un pop-up del lado izquierdo con alguna información relevante. Y es justo ahí en donde podrás encontrar la información demográfica y socioeconómica que en este caso Carolina estaba buscando.

datlas_mapa_premium_nl_popup_poligono

Ahora bien, ya identificaste donde está la información ¿qué sigue? ¿checar uno por uno todos los polígonos? ¡Por supuesto que no! para eso hemos habilitado la herramienta llamada búsqueda específica que se encuentra justo en la barra lateral derecha. Esta herramienta te permite establecer un área dentro del mapa y buscar aquellos polígonos que cuenten con características específicas, como por ejemplo mujeres de 24 a 31 años.

datlas_mapa_premium_nl_busqueda_especifica

Una vez identificada la herramienta el siguiente paso es establecer los criterios de búsqueda. En este caso podrás observar que los rangos de búsqueda para variables como “Mujeres” (cantidad de mujeres) desde 0 hasta un máximo (ej: 1547). En el caso de Carolina, podemos hacer un cálculo simple para establecer la cantidad de mujeres que necesitaría encontrar: si Caro quisiera atender 3 bodas cada fin de semana del mes estaría buscando generar 12 clientas. Si su porcentaje de conversión es del 10% eso quiere decir que debe estar buscando una zona con 120 clientas potenciales (prospectos). Siendo así el criterio de búsqueda para el tema de mujeres debería tener como mínimo 120.

free_Suscriber

Ahora bien, Caro no solo busca mujeres, sino mujeres de cierta edad, así que el segundo paso sería establecer un rango para las edades de 25 a 31. Es importante notar que los datos de edades son agregados, es decir, contemplan tanto a hombres como mujeres por lo que un cálculo simple pudiera ser el siguiente: navegando en la plataforma notamos que la mayoría de las veces la proporcionalidad de hombres y mujeres es de alrededor de 50-50% por lo tanto, usando esta simple regla de dedo, si queremos encontrar 120 mujeres y el rango de edades contempla hombres y mujeres, pudiéramos establecer un mínimo de 240 para la variable de edad de 25 a 31.

Finalmente, Caro buscaba que tuvieran una capacidad de pago de $5,000 MXN o más. Aquí es importante contextualizar. El dato socioeconómico que manejamos es el de ingreso promedio, por lo tanto, si buscamos que sean personas dispuestas a gastar $5,000 MXN en su organización de bodas habría que buscar que su ingreso promedio sea superior a esta cantidad. Para simplificar el ejercicio, en este caso, lo haremos buscando ingresos de $10,000 MXN o más.

El pase de diapositivas requiere JavaScript.

Finalmente, el resultado es muy simple: en color rojo verás todos aquellos polígonos dentro del área que has establecido, pero que no cumplen con los criterios de búsqueda. Por otro lado, los polígonos en color amarillo serán aquellos que cumplen con las características establecidas. De esta forma puedes identificar rápidamente las zonas en donde se encuentran tus prospectos. Con esto, Caro, tú y todos nuestros clientes pueden accionar campañas enfocadas, realizar trabajo en campo de una manera focalizada o muchas otras estrategias para capitalizar a ese mercado meta que ya has podido encontrar.

datlas_mapa_premium_nl_busqueda_especifica_resultado

Recuerda que esta es solo una de las multiples herramientas de análisis que integran nuestros mapas. Puedes combinar el uso de distintas herramientas para realizar análisis más complejos, comparar los resultados en distintas zonas y mucho más.

Puedes probar este ejercicio y todos los demás detalles suscribiéndote en nuestra pagina y probando la versión DEMO.

Si crees que ya estas listo para ponerte manos a la obra y captar más prospectos puedes ir directamente a nuestro Marketplace y aprovechar el código de descuento BLOG100 para obtener $100 MXN de regalo en tu primera compra de cualquiera de nuestros mapas Premium.

free_Suscriber

De esta manera concluimos el blog de hoy, mantente atento a todos los nuevos casos de uso, videos y nuevos lanzamientos que tendremos para ti.

Siguenos @DatlasMX

Dimensionando la industria de “Analítica de datos e Inteligencia Artificial” – Datlas Research

¿Cuántas empresas de analítica de datos existen? ¿En qué industrias están participando? ¿Quién está desarrollando Inteligencia Artificial? Hoy hablaremos del mapa de mercado desarrollado por “Firstmark”  (@matttruck). Desde Datlas, startup mexicana de analytics, dedicamos esta columna a profundizando en el dimensionamiento y la clasificación de la industria completa de analítica de datos e inteligencia artificial.

Mapa completo de industria al 2019

2019_Matt_Turck_Big_Data_Landscape_Final_Datlas
Descarga aqui: https://cloudup.com/ck5aIRPKNuU

Según el reporte podemos encontrar 7 industrias y 82 sub-industrias para la industria de “datos” (Analítica, big data e inteligencia artificial).  Ahora haremos un pequeño enfoque a cada una.

1) Infraestructura

Abrir una empresa de analítica de datos y de tecnología hace 20 años tenía como 80% del presupuesto dedicado a infraestructura. Comprar potentes procesadores y sobre todo capacidad de almacenaje físico. Sin embargo, en los últimos 10 años ha ido en incremento los oferentes de poder de cómputo distribuido y almacenaje por nube.

1_Infrastructure_Panorama_Datlas

2) Analítica y Machine Learning(ML)

¿Tableau? ¿Power BI? ¿Watson? la mayoría de sus servicios corporativos pertenecen a la vertical de la subindustria de analítica y ML.  En estas plataformas es posible encontrar soluciones para convertir datos en algoritmos o visualizaciones y así mismo en ventajas comparativas para una empresa.

2_Analytics_ML_Panorama_Datlas

3) Aplicaciones con enfoque a empresa

Hay otro segmento de soluciones prediseñadas donde participan las tecnologías de analítica de nicho. Soluciones para gobierno, industria inmobiliaria o financiera son alguno de los ejemplos de empresas que han generado soluciones tan específicas como para atender un nicho. Estas startups buscan como estrategia ser tan importante en la industria que se acerque algun gigante como IBM, Microsoft o Palantir para adquirir su participación en la industria.

3_Aplicaciones_Empresa_Panorama_Datlas

4) Analítica de infraestructura cruzada

Son compañías que desarrollan diversas plataformas suficientemente robustas como para adaptarse a distintas industrias. En su mayoría podemos entender estos desarrollo como empresas que buscan generar ecosistemas más que productos o servicios.

4_Infraestructura_Cruzada_Analytics_Panorama_Datlas

**Si te interesa conocer más de analítica de datos y Big data te invitamos a solicitar GRATIS el DATA PLAYBOOK Vol. II de DATLAS. Solicítalo aqui. **

Datlas_Playbook_prelaunch

5) Open source – Fuentes abiertas

Hay otro segmento de compañías, organizaciones y desarrolladores independientes que son fieles creyentes del “open source”. Esto hace referencia a los aplicativos que son gratuitos y mejorados por la comunidad que los utiliza. Aunque pareciera que no hay incentivos, casos de éxito como R, Hadoop o Linux , que son Open-source, son impulsores de cambios y mejoras en las industrias de manera significativa.

5_OpenSource_Panorama_Datlas

6) Fuentes de Datos y APIs

Los modelos de analítica y Big data requieren datos listos para ser consumidos. Es decir limpios, estructurados y actualizados. En este sentido hay una serie de empresas de fuentes de datos que se han encargado de desarrollar APIs o carreteras directas a fuentes de datos de valor.  Este es el caso, sobre todo, de aplicaciones móviles que recopilan datos de usuarios y como modelo de negocio comercializan esos datos.

6_RecursosdeDatos_Apis_Panorama_Datlas

Si quieres conocer más de este tema te puede interesar ¿Cómo funciona Location intelligence? el blog donde explicamos este tema a detalle

7) Más recursos de datos

Finalmente otros recursos de datos como las escuelas, incubadoras, centros de investigación o plataformas de retos de datos como Kaggle. Sin restarle importancia (Consideremos que Google ha adquirido un par de estas empresas), continua el incremento y las empresas que quieren ganar nombre desde verticales más tradicionales como consultoría, educación o desarrollo de patentes/algoritmos propietarios.

7_RecursosDatos_Panorama_Datlas

¿Qué opinas del tamaño de la industria? ¿Te imaginabas? Hasta aqui la columna de hoy si te gustó el contenido recuerda compartir y aprovecha nuestros descuentos en el MARKETPLACE DE DATLAS.

***BONUS 8 de Enero 2020*** CB Insights libera un reporte de Tendencias en Inteligencia Artificial donde estructuran las iniciativas de “Alphabet”. Parece que ellos están entendiendo como ir capturando la industria desde distintas empresas.

Alphabet_CB_Insights_KEY_AI_Initiatives_Google

 

Equipo Datlas

-Keep it weird-

 

 

 

 

¡NUEVO! Mapa Socios Datlas: Al servicio de agencias de investigación, firmas de consultoría y grandes corporativos.

Nuestra filosofía está basada en que, con la información y la tecnología adecuada, las personas podrán resolver problemas cada vez más complejos. Para mantenernos en sintonía con esta afirmación realizamos constantes esfuerzos en pro de los tres grandes pilares de nuestra empresa: la información, la tecnología y las personas. Durante los últimos años hemos realizado esfuerzos por integrar cada vez más y mejor información a nuestras soluciones, integrar lo mejor que hay en tecnología y finalmente, lo más importante, escuchar a las personas: nuestros clientes. Cada innovación que hemos realizado ha tomado en cuenta estos 3 pilares y es por ello que hoy nos complace presentarles nuestro más reciente lanzamiento: el Mapa Socios Datlas.

datlas_marketplace_socios_NL

Este nuevo modelo de licenciamiento nace a partir de nuestra relación con agencias de investigación y firmas de consultoría, entendiendo que hoy en día están teniendo su propia transformación digital, al igual que los negocios a los que les prestan servicios. El objetivo detrás de esta nueva herramienta es apoyarles a generar mayor valor a sus clientes. Quédate hasta el final y podrás ver el video de nuestro primer socio.

free_Suscriber

Pero ¿cómo es que estas agencias y consultoras han llegado hasta este punto? Hace falta entender un poco de historia, se las contamos en breve.

Para tomar una decisión basada en datos existe todo un proceso detrás que podemos simplificar en 5 etapas:

  1. Recolección de los datos
  2. Organización de los datos
  3. Análisis de los datos
  4. Generación de reportes de resultados
  5. Y, finalmente, la toma de decisiones

Esta claro que el valor agregado detrás de los servicios de las agencias y consultoras está en el análisis de la información, por lo que las etapas de recolección y organización de datos resultaban ser un “mal necesario” hace algún tiempo. Dado el contexto de los negocios y la estructura de estas organizaciones, generalmente delegaban este trabajo a un solo miembro de la organización por lo que estas etapas se volvían intensivas en consumo de tiempo y recursos.

datlas_proceso_tiempo

Conforme los negocios fueron evolucionando, comenzaron a exigir cada vez un menor tiempo de respuesta para estos servicios y las agencias y consultoras, muy acertadamente, comenzaron a distribuir el trabajo entre un equipo de personas, logrando beneficios directos.

Pero actualmente el contexto ha cambiado de una forma disruptiva. Hoy en día los negocios no solamente exigen una inmediatez en la respuesta sino una capitalización del valor que saben que esconden sus datos. Y es precisamente en este punto donde, en conjunto, hemos desarrollado una solución que permite a Datlas encargarse del trabajo duro de la recolección y organización de los datos, para que nuestros socios puedan enfocarse directamente y de lleno al análisis de la información y la derivación de accionables de valor.

datlas_proceso_tiempo_optimizado

De esta manera hemos logrado diseñar una plataforma completamente nueva que capitaliza la experiencia que hemos tenido en Datlas y fusiona los grandes conocimientos de estas agencias y firmas de consultoría, dotando a nuestros socios de toda la información de forma inmediata y también permitiéndoles integrar y personalizar capas de datos que ellos puedan manejar de sus clientes.

El pase de diapositivas requiere JavaScript.

Finalmente, te invitamos a escuchar de todos lo que puedes lograr como Socio Datlas desde la voz de nuestro primer socio:

datlas_mapa_socios_testimonio_KM_Galera

Si conoces a alguien que pudiera ser Socio Datlas o tienes alguna duda por favor escríbenos a direccion@datlas.mx y con gusto te apoyaremos. Con tu ayuda seguimos creciendo y generando mejores soluciones que nutran y hagan crecer el ecosistema digital de México.

free_Suscriber

Siguenos y mantenten al día con los nuevos lanzamientos

@DatlasMX

 

¿Cómo construir un CHECKLIST para iniciativas de analítica de datos? – Datlas research

Hace un par de blogs conversamos sobre cómo cerca del 70% de los proyectos de datos fracasan. Identificando el problema ¿No vendría bien una fórmula que reduzca este oportunidad de error? ¿Hay una receta? Pues la respuesta es sí y no es como la de la abuela, la receta del éxito en los datos no es ningún secreto. Tiene que ver con hábito, cultura y método. En esta columna profundizamos entre métodos que vienen de distintos ángulos: Academia, profesión, ciencia , entre otros para concretar un “listado” a estilo “checklist” de preparaciones para implementar un proyecto de analítica en una organización. Nosotros, desde Datlas, invitamos a las organizaciones a evaluar más de 100 puntos a la hora implementar nuestras tecnologías o cualquier tecnología de analítica. Para esta ocasión hicimos un resumen. Es importante aclarar que el sesgo de este escrito es hacia corporativos y empresas grandes, que tienen funciones repartidas en departamentos con responsabilidades específicas y la burocracia habitual de la estructura vertical de un gran negocio.

Datlas_barra_suscribir

I. Entendiendo el contexto

Datlas_checklist1

Ya hemos discutido antes en ¿Cómo ejecutar una estrategia de Big Data en mi organización? como el contexto y los objetivos tienen principal relevancia a la hora de llevar un proyecto de analítica. Sin embargo cuando la iniciativa de datos arranca desde una gran organización hay otros puntos a clarificar para aumentar las probabilidades de éxito de un proyecto de analítica. Todos ellos tienen que ver con entender el contexto.

Si pudiéramos enumerar 6 elementos importantes qué tomar en cuenta son: Estrategia, datos, analítica, implementación, mantenimiento o soporte y restricciones.

Datlas_Playbook_prelaunchEn general, entender el contexto con la profundidad adecuada nos habilita a tomar todas las precauciones necesarias a la hora de diseñar los presupuestos financieros, técnicos y temporales de un proyecto.  De manera errónea muchas organizaciones le dan el mismo trato a un proyecto de analítica que a un proyecto de TI (Como activar un nuevo punto de venta o implementar un nuevo equipo de hardware). Sin embargo la historia e investigaciones de los últimos 10 años nos vinculan a que los proyectos de analítica requieren equipos especializados y esto es debido a que tienen un “checklist” distinto.

 

*También te puede interesar: Los 5 perfiles para una estrategia de datos éxitosa en mi organización. Y tener nuestroData Playbook Vol. II” GRATIS antes que nadie.

II. Generando un checklist personalizado para proyectos de analítica

Hay un montón de literatura sobre este tipo de checklist, pero siguiendo nuestra fuente favorita de “Fast.ai” encontramos la siguiente estructura a la hora de hacer un checklist para proyectos de analítica. Integra 6 aspectos, pero agregaremos uno más y al final de la columna explicaremos porqué.

1) Aspectos Organizacionales

Datlas_checklist_organizacional

Debemos de iniciar cuidando los higiénicos, esto quiere decir los aspectos organizacionales que van en relación a las personas que llevarán a cabo la estrategia. La probabilidad de éxito en un proyecto de datos incrementa si se tienen métodos de trabajo en reclutamiento, ubicación de talento y medición de resultados. Estas 5 preguntas pueden servir de orientación.

2) Aspectos Estratégicos

Datlas_checklist_Estrategia

Una iniciativa de datos habilita un pronunciamiento estratégico de la compañía y no al revés. En este sentido los proyectos de big data e inteligencia artificial deben de responder y aportar a algunos de los objetivos estratégicos de la compañía. Sencillamente cada hora dedicada a junta, proyecto, investigación o desarrollo de un científico de datos deberá estar apuntando a cumplir un objetivo estratégico.

3) Datos

Datlas_checklist_data

El error común de las organizaciones es que inician por los datos, cuando en realidad previo a esto ya establecimos que deberían estar las personas, cultura y estrategia. Luego hay que invitar a los “técnicos” a participar en el checklist para validar el grado de factibilidad a la hora de consultar bases de datos específicas.

4) Capacidades analíticas

Datlas_checklist_analytics

Los datos son la materia prima, pero necesitamos a las mentes expertas que les van a sacar valor y nos guiarán hacia el cumplimiento de los objetivos establecidos. Estas capacidades incluyen, pero no se limitan, a evaluar herramientas óptimas para trabajar, programar ETL para formatear bases de datos en los formatos requeridos y la gestión general del proceso de obtención de valor. Similar a como lo comentamos en ¿Cómo convertir tus datos en dinero?

5) Implementación

Datlas_checklist_implementación

Este tema tiene que ver con el diseño experimental a la hora de implementar un ejercicio de analítica. Sobre todo para poder contrastar si haber integrado la analítica tuvo un cambio a favor o en contra de la manera en que tradicionalmente se hacía esa tarea. Por ejemplo,  si ahora implementaste un nuevo equipo, tecnologías e infraestructura para analizar el programa de lealtad de tu compañía ¿Cómo validas que la inversión haya retornado? Ahorraste en tiempos, ganaste más dinero, lograste mejores redenciones e las promociones que les enviaste. La sección de implementación se relaciona con los factores que definen el éxito del proyecto.

6) Mantenimiento

Datlas_checklist_mantenimiento

Un checklist de éxito en proyectos de analítica tiene que contemplar los procesos de mantenimiento. Por ejemplo en este caso de revisar programas de lealtad hay que responder ¿Cómo será la carga de nuevos usuarios? ¿Cada cuándo? SI algo falla ¿Quién lo resuelve? ¿Cada cuándo se “refactoriza” o se retan los algoritmos?

Y vamos a ser redundante en uno,por temas de  experiencia propia, tendremos que incluir la importancia de analizar

7) Restricciones

Todas las preguntas asociadas a las restricciones en todas las áreas funcionales con las que colaboraremos. Pueden ser desde presupuesto financiero, tiempo disponible, recursos dedicados, otros proyectos activos, entre otros. Todo lo que vaya a tener un impacto o riesgo en nuestro proyecto puede afectar.

Datlas_barra_suscribir

Hasta aqui la columna de hoy, esperamos que después de haber leído esto tengas una mayor idea de cómo implementar un CHECKLIST para tu organización. Recuerda utilizar estos recursos como inspiración y adaptarlo al contexto y madurez tecnológica de tu negocio. Recuerda compartir y no olvides registrarte al nuevo “DATA PLAYBOOK VOL II” que estaremos liberando muy pronto GRATIS. Sólo da click en la liga.

Elaborado con ideas y experiencias propias de la startup DATLAS e inspirado por la fuente: https://www.fast.ai/2020/01/07/data-questionnaire/

NUEVO DATLAS PLAYBOOK VOL. II – 100 usuarios lo recibirán antes que nadie

En Datlas iniciamos el año con muchos lanzamientos. Ya lucimos nuestro nuevo marketplace de datos y apis donde estaremos activando cupones de descuento durante el año. También lanzamos la plataforma de Laura para hacer estudios de mercado en cuestión de horas, gracias a nuestro sistema apoyado por inteligencia artificial. Y buscando continuar aportando a los entusiastas de datos hemos terminado de redactar nuestro “Datlas Playbook Vol. II”. En esta columna explicamos brevemente qué es un playbook y te invitamos a la dinámica para ser una de las primeras 100 personas en recibir este contenido.

Datlas_barra_suscribir

¿Qué es un Data Playbook?

Un “Data Playbook” es un documento que contiene “jugadas” y técnicas específicas para tu negocio alrededor de una estrategia de datos. Más que teoría, este texto es un diario de aprendizajes basados en ejecución de accionables.

Tras el éxito de nuestra primer versión ahora quisimos lanzar una segunda parte. En esta ocasión con más enfoque al desarrollo de estrategias para implementar Big Data.

A continuación te compartimos el índice

El pase de diapositivas requiere JavaScript.

Este obsequio lo podrás recibir antes que nadie participando en la siguiente dinámica

  1. Entra a nuestro marketplace y selecciona el producto de prelanzamiento. Puedes hacerlo dando click aqui.
  2. Después integra el carrito a tu cesta y vete directo a la pasarela de pagos. Da click aqui para llegar a la ruta directa

Marketplace_Playbook_2020_pasarela

3. Ingresa tu correo y da click en pagar. Completa tus datos y finaliza pedido.

4. El 27 de Enero serás de las primeras personas en recibir el nuevo playbook

Datlas_barra_suscribir

Hasta aqui la columna de hoy, esperamos te guste el próximo Data Playbook, te suscribas y aproveches los descuentos que estaremos compartiendo.

*********************************************************************

En Datlas nos dedicamos a transformar datos en decisiones de una manera ágil y sencilla. Apalancados de técnicas de big data e inteligencia artificial hemos desarrollado 3 plataformas la servicio de nuestros más de 500 usuarios. Con Datlas podrás tener a tu alcance estudios de mercado y soluciones de analytics de inmediato. Para más información contácta a ventas@datlas.mx

*************************************************************************/

Equipo Daltas

-Keep it weird-