Archivo de la categoría: Data

Dashboards de negocios, guía para principiantes – Datlas

Un avión donde viajan 300 personas que puede ser conducido por 2 personas, una megaciudad de más de 5 millones de habitantes conducida desde un “war-room” (C4 ó C5) con 20 personas, o la gestión de un mundial de fútbol en más de 20 ciudades a la vez controlado por un equipo de 40 profesionales ¿Qué herramienta tienen en común?  Todos en algún momento usaron dashboards.

Datlas_barra_suscribir

En los negocios ocurre igual. Un tablero de control o dashboard es un lugar donde se pueden monitorear los aspectos más importantes del quehacer de una organización. Sinedo así,en el campo de “inteligencia de negocios” o “business intelligence”, este tipo de herramientas le ayuda a los tomadores de decisiones y operativos a reaccionar de forma efectiva a cambios en el negocio.

1) ¿Qué es un dashboards de negocios?

Es un gráfica que refleja el estatus operativo de datos recolectados en tiempo real (o casi tiempo real) visualizados en una plataforma. Un ejemplo de lo que podría ver un empresa que se dedica a envíos de comida a domicilio en un dashboard.

El pase de diapositivas requiere JavaScript.

Así como los pilotos en un avión monitorean la altura, velocidad, ruta y otros aspectos del vuelo. En un negocio podríamos vigilar las órdenes , las ventas, tiempos de entregan las entregas exitosas, los artículos más vendidos, entre otros.

Te puede interesar nuestra columna titulada: Ranking de Dashboards de COVID-19.

2) Características de un dashboard

Para ser considerado un buen panel de control tendría que integrar:

  • Un sistema valioso de indicadores
  • Visualización e interacción intuitiva
  • Buena calidad de datos como insumo y amplitud en cortes temporales
  • Un sistema completo de arquitectura que permita actualización automática

Recomendamos que leas nuestro ejemplo en: Analítica en Dashboards para Turismo.

3) ¿Cuáles son los tipos de dashboards?

Datlas_niveles

  • Dashboard estratégico: Resume y sintetiza los indicadores más importantes de la compañía para tomar decisiones de manera rápida basadas en datos
  • Dashboards analíticos: Puede ser estratégico y operativo, destinado a que los equipos de mandos altos y medios puedan tomar decisiones de manera más ágil
  • Dashboards operativos: Enfatiza el reporteo de información constante y continua
4) ¿Qué acciones debería habilitar un dashboard?
A) Seguimiento a KPIs
Datlas_saludkpis

Una vez que se realizó el trabajo de planificación estratégica donde se delimitaron los KPIs que los equipos de trabajo deberán de cuidar para que los proyectos tengan buena salud es importante poder visualizarlo en el dashboard. Por lo mismo es útil generar un “semáforo” donde rojo sea señal de gran oportunidad para mejorar y verde sea buena salud.

B) Alertar de comportamientos fuera de rango o prevenciones
Datlas_alertas

Las mejores implementaciones de inteligencia de negocios generan tableros que están listos para alertar sobre comportamientos críticos o situaciones que necesitan inmediata atención. Idealmente estas notificaciones tienen que ser desarrolladas por las personas con más experiencia en la organización y con base a atender las oportunidades que de no atenderse podrían representar un costo no reemplazable a la compañía.

C) Monitoreo en tiempo real
Datlas_gif_Realtime_Dashboard

En una etapa más avanzada habrá que procurar que el monitoreo de los datos sea en tiempo real. Esto requiere necesidades más sofisticadas de infraestructura y que se cuenten con iniciativas de ciberseguridad para asegurar que no haya fugas de información. Esto permitiría una toma de decisiones más oportunas sobre datos que sean reales.

Cierre

Los dashboards permiten ser más eficientes y eficaces en la toma de decisiones operativas y en el cumplimiento de la estrategia de una organización. Hay que trabajar de la mano con el área o la función de planeación en nuestra compañía para generar buena calidad de KPIs, alertas y sobre todo garantizar que los datos más dinámicos sean actualizados en tiempo real.

Datlas_barra_suscribir

Si te interesa seguir conociendo más de este tema (KPIs y herramientas de medición te invitamos a nuestra próxima charla. Puedes registrarte aquí GRATIS: https://bit.ly/dfuturos4 

WhatsApp Image 2020-07-06 at 9.05.32 AM

También solicitar en nuestro marketplace una llamada para platicar sobre este tema y evaluar cómo con alguno de nuestros casos aplicados podemos ayudar a tu organización.

Fuentes:

Lo que esconden tus datos: Análisis de CRM para mejorar precios, catálogos, marketing y ¡más!

La vida de un negocio son sus ventas. La complejidad es que las ventas son tanto arte como ciencia. Uno de los retos más comunes cuando trabajamos con empresas o grandes corporativos es el descifrar la fórmula para construir una estrategia comercial exitosa. Sin duda en estos tiempos esa fórmula se vuelve dinámica ante las circunstancias y son muchos los elementos a configurar. Por suerte la materia prima detrás de toda la parte “científica” de esto se encuentra en nuestro elemento favorito: los datos. En esta entrada vamos a platicar acerca de las distintas formas en las que los datos comerciales y de tu CRM se pueden usar para capitalizar mejoras en precios, catálogos, marketing, programas de descuentos y mucho más.free_Suscriber

Antes de comenzar es crucial entender un poco de historia. La gestión de la relación con clientes ha sido uno de los componentes más antiguos de los negocios. La infalible pluma y papel fueron suficiente en su momento para llevar el registro básico de las ventas y los clientes. En los años 50´s llegó el famoso Rolodex (se vale buscar en Google, yo también lo descubrí recientemente) que ofrecía la capacidad de girar los registros mientras añadías nuevos clientes y actualizabas la información de otros ya existentes. El siguiente gran paso se da a inicios de los 80´s cuando llegan las bases de datos a revolucionar el proceso de consolidación de la información de los clientes, aunque a finales de esa década el aprovechamiento de estas bases de datos era aún limitado, figuraba tan solo como un directorio o Rolodex digital, con pocos insights y casi nulas interacciones de la compañía con sus clientes. Hasta inicios de los 90´s comienza la automatización de los procesos de ventas y justo en 1995 se acuña el termino Customer Relationship Management o CRM, por sus siglas en inglés. A partir de esa década comienza la profundización en los análisis y una gestión mucho más detallada e inteligente de la relación con los clientes.

El pase de diapositivas requiere JavaScript.

Ahora bien, el CRM perse es una herramienta tecnológica pero su punto de partida, como en todo, son los datos que se alimentan en él. En este sentido la primera etapa importante antes de analizar los datos comerciales y de CRM es precisamente generarlos. Dentro de esta etapa de recolección de datos es importante establecer los procesos de negocio en donde interactúas con tu cliente y se abre la posibilidad de ese intercambio de datos o de información. Asimismo, es crucial que como negocio definas los datos “necesarios” y los datos “deseados” que buscas obtener de tus clientes para poder comenzar a llenar este CRM. Finalmente, debes establecer una mecánica de incentivos para poder propiciar de manera natural y benéfica para ambas partes el hecho de compartir estos datos.

Vamos a aterrizarlo en un caso de negocio. Eugenio, uno de nuestros clientes dentro de la industria energética, nos pidió apoyo para generar su estrategia go-to-market de su nuevo panel solar. Esta claro que analizamos sus datos comerciales y de su CRM, pero lo interesante aquí es resaltar los 3 atributos que mencionamos en el párrafo anterior. Eugenio tenia claro que uno de sus procesos de negocio mas importantes era el hecho de la interacción del cliente en su página web, dado que por la naturaleza del producto y el servicio que lo acompaña, el anaquel digital resultaba muy relevante. Después estableció que los datos que necesitaba obtener del cliente eran su ubicación y el consumo promedio de luz, aparte de los datos de contacto. Fue así como se le ocurrió armar una “calculadora de ahorro” dentro de su sitio web como un incentivo para que el cliente pudiera compartir estos y otros datos a cambio de un beneficio directo que era el calculo del monto estimado de ahorro que podía obtener con el nuevo panel solar que se estaba ofreciendo.

datlas_mx_blog_crm_customer_master_data_management-01

Hasta aquí se ha logrado establecer una dinámica para obtener los datos, el paso siguiente es precisamente adentrarnos en los datos. Cuando estamos analizando datos comerciales y de CRM es importante hacer un diagnostico y establecer el inventario completo de variables con el que vamos a estar trabajando, es decir, a pesar de que para un negocio un medio de contacto sea el teléfono, para otro podrá ser el correo electrónico o incluso ambos. En este sentido el punto de partida es entender muy bien la base de datos, las variables con las que vamos a estar “jugando” y comenzar a establecer algunas categorías de datos como, por ejemplo: perfil, canal fuente, dinámica. En el caso de Eugenio por ejemplo cuando hablamos de la categoría perfil estamos agrupando todos los datos que hablan del cliente como, por ejemplo: su nombre, su correo, su teléfono, el lugar donde vive, etc. Cuando hablamos de canal fuente estamos hablando de la forma en la que conoció y se entero de la empresa, como llego, si tuvo algún costo esa publicidad por la que se enteró, etc.

Finalmente, en la categoría de dinámica es necesario hacer una profundización todavía más importante ya que nos referimos a los datos que distinguen y diferencian a los clientes a lo largo de las etapas del proceso o ciclo de ventas. En este caso cuando hablamos de proceso o ciclo de ventas es relevante comprender la metodología que esta utilizando el negocio. Sabemos que existe mucha literatura, estudios y propuestas acerca de ventas, procesos y ciclos, algunas de 5 pasos, 7 etapas, 9 fases, etc. Aquí lo esencial es entender la forma en la que el negocio distingue entre un cliente que esta en la etapa 1 y como es que pasa a estar en la etapa 2, por ejemplo. En el caso de Eugenio, ellos tenían una gestión muy sencilla con 3 grandes etapas: lead, prospecto y cliente (o venta). En su equipo definieron un lead como todo aquel individuo que haya mostrado interés en su producto a través de compartir su información. Esa persona no podía pasar a la etapa de prospecto si no habían ocurrido 3 cosas: había entrado en contacto con un representante de ventas, había aceptado que se le generara una cotización y ya se le había generado y comunicado esa cotización. Finalmente se convertía en cliente (o venta) una vez que aceptada dicha propuesta o cotización y se generaba la factura de venta. De esta manera, se logra una claridad en cuanto a los datos que permite entender a quien realiza el análisis donde buscar y que datos utilizar al momento de atacar los distintos retos o hipótesis que se planteen al inicio del ejercicio.

El pase de diapositivas requiere JavaScript.

En cuanto se tiene claro los datos y las estructuras del CRM y la información comercial es momento de apalancarla para atacar los retos del negocio. En este caso, por ejemplo: mejorar precios, catálogos, marketing y programas de descuentos.

En el caso de mejoras o cambios en precio, tomando como ejemplo a Eugenio y su negocio, es de suma importancia poder apalancar los datos que tienen que ver directamente con la conversión, es decir, con la parte del proceso en el que pasa de prospecto a cliente. Lo que se hace aquí es agrupar a aquellos individuos que hayan tenido como principal indicador de “no conversión” un tema del precio y utilizar los datos del CRM para generar una segmentación. Ahora bien, cuando nos referimos a segmentación no estamos hablando del típico hombre/mujer, edad, etc. Sino un tema de necesidades, es decir, hay que descifrar que nos pueden decir los datos acerca de la necesidad o el beneficio percibido por el cliente en contraste con el precio. Por ejemplo, en el caso de Eugenio, ellos tenían claro el consumo promedio, con lo que pudieron hacer un análisis y encontraron una correlación entre consumo promedio y el precio estándar del nuevo panel, de tal forma que se dieron cuenta que para el punto de precio del nuevo panel el segmento de clientes al que debían dirigirse se distinguía por tener una necesidad de ahorro a partir de cierto consumo. ¿Y eso que con el precio? Precisamente estos insights permitieron que se buscaran alternativas para generar productos con un punto de precio más bajo para ese segmento detectado o incluso explorar alternativas como financiamientos, arrendamientos o planes de pagos que pudieran tener un impacto indirecto en la percepción del precio por parte del cliente.

datlas_mx_blog_crm_pricing

Por otro lado, en el tema de mejoras al catálogo de productos el acercamiento al reto debe darse de forma distinta. Retomando el ejemplo de Eugenio y su negocio, para este punto estaríamos enfocándonos en analizar los datos dentro de las etapas de lead y prospecto, para destacar cuales fueron aquellos productos en los que las personas mostraron más interés. Igualmente cabe la posibilidad de una segmentación por necesidades. Si analizamos, por ejemplo, las palabras claves o los anuncios utilizados en las campañas de generación de leads y las cruzamos con términos relacionados nos podríamos dar cuenta, como Eugenio, que existe un particular segmento de clientes que no solo está interesado en paneles, sino que en el contexto de su búsqueda esta preocupado por el medio ambiente, busca alternativas de energía sustentables, renovables, etc. De tal suerte que pudiera explorarse, haciendo quizá un A/B testing, la forma de incluir dentro del catalogo de productos unos focos o bombillas de tecnología lead ya que consumen menos energía, iluminan más, etc. De esta forma hay un impacto directo en el catalogo de productos.

datlas_mx_blog_consultoria_crm_catalogo

Finalmente, para el tema de marketing, que sin duda es todo un universo y un mundo en sí mismo, existen bastantes formas de apalancar los datos comerciales y del CRM para enfocar mejor las campañas de mercadotecnia. En el caso de Eugenio, e incluso para nosotros, la información de la fuente desde la que se genero ese lead ha sido muy importante para discriminar entre los distintos canales de difusión y marketing. Igualmente, los datos del perfil del cliente nos han ayudado a definir áreas geográficas, zonas, regiones en donde enfocar puntualmente las campañas. Complementando con el punto anterior y apalancando incluso también información de la fase de cliente (o venta) se pudieran analizar atributos o características claves que el cliente percibe y expresa acerca del producto como para ajustar los mensajes, las frases y los anuncios en términos de lenguaje, beneficios a comunicar y formas de realizar el acercamiento.

Así que estas son algunas de las formas en las que hemos apoyado a nuestros clientes a aprovechar toda la información comercial y de su CRM para generar mejoras que impacten en los resultados de su negocio. Si estas interesado en explorar algo como esto te invitamos a visitar nuestro Marketplace y agendar una sesión con nosotros para platicar al respecto y ver la forma en que pudiéramos ayudarte.

Hasta aquí la columna de hoy, gracias y no dejes de compartirnos tu opinión en redes sociales

@DatlasMX

 

Clustering para generar segmentos de mercado – Datlas Research

Como lo platicamos en “La historia de las tecnologías de información computacional” desde que el poder de cómputo ha incrementado hemos buscado formas de generar análisis más completos y asertivos para nuestros casos de estudio.

Datlas_barra_suscribir

Uno de ellos es el análisis de clúster que es una técnica estadística multivariante cuyo objetivo es formar grupos de elementos homogéneos o similares que al mismo tiempo sean heterogéneos o distintos entre sí. ¿En español y negocios? Hay casos en donde generar una estrategia para cada cliente puede ser costoso, pero si agrupamos a estos clientes en segmentos podemos impactar a grupos similares con estrategias puntuales.

En esta columna explicaremos un caso de ejemplo de clustering para generar segmentos de clientes. Los datos que revisaremos vienen de encuestas levantadas con visitantes al festival Luztopia. (Si te interesan sólo los resultados favor de pasar al final de la columna). El objetivo identificar segmentos de asistentes específicos al festival para la ideación y generación de mejores promociones el próximo año.

El pase de diapositivas requiere JavaScript.

Para ser justos hay que explicar que existen distintos tipos de análisis para generar estas agrupaciones o clústers. Los dos grandes grupos son: No jerárquicos y jerárquicos. En este caso en particular usaremos uno de los métodos  no jerarquicos. Lo que quiere decir que un clúster generado no depende de otro clúster, son independientes.  Dentro de los no  jerarquicos utilizaremos los asociados al algoritmo “k-means”, que está dentro de la familia de los no jerárquicos. Este algoritmo usa de inicio medias aribtrarias y, mediante pruebas sucesivas, va ajustando el valor de la misma. La idea es no ponernos más técnicos, pero si te interesa conocer más a detalle te recomendamos revisar la p.23 de este documento. En pocas palabras k-means nos apoyará ensamblando clústers de perfiles que sean similares entre sí, pero a la vez diferentes entre cada grupo.

BASE DE DATOS

La información que revisaremos son un par de encuestas que incluyen datos como los siguientes:

Datlas_blog_clustering2

En concreto usaremos para armar los clústers las variables numéricas, tales como: Edad de personas que respondieron, tamaño de su grupo, cantidad de menores de 18 en el grupo, gasto en cena, gasto en productos dentro del recorrido, gasto total estimado y tiempo de estancia en el evento. Para quienes han analizado datos similares ya se podrán imaginar el tipo de respuestas que podremos generar: ¿Cuáles son los perfiles que más visitan? ¿Qué perfiles gastan más en su recorrido? ¿Habrá relación entre los visitantes que van con niños y su compra en cenas? ¿Extender el recorrido en tiempo haría que las personas consuman más cenas? Entre otros.

Este es el tipo de respuestas que generamos en los reportes que trabajamos en Datlas, sin embargo para fines de esta columna nos ubicaremos en el ejercicio de clústers buscando generar segmentos para los cuales podamos generar nuevas promociones.

MÉTODO

Un paso que algunos analistas descuidan es el proceso de “normalizar” datos. Una vez que empiezas por el camino de #machinelearning va a ser un paso que será muy común.  “Escalar” es un proceso de redimensión de variables para que estas se encuentren entre rangos de -5 a 5, por ejemplo. Este proceso ayuda a centrar los datos alrededor de la media.  Estos métodos tienen área de oportunidad cuando tenemos anomalías, pero en este caso dado la distribución de las variables hacía sentido escalar. A continuación un contraste del proceso.

El pase de diapositivas requiere JavaScript.

A partir de este proceso generamos una matriz de distancia entre las variables. Esto nos indica en rojo los registros de variables, en este caso visitantes a Luztopia, que son más distintos en perfiles y hábitos de consumo. Aunque realmente es complicado leerlo así. Por lo mismo es un paso intermedio

Datlas_matriz_Distancia_Cluster

Un siguiente paso es hacer una primera iteración de clústers. En esta ocasión supervisamos al algoritmo para que nos entregue de regreso 4 clústers. Cada punto que vemos en la gráfica es una encuesta respondida por la muestra de visitantes que estamos evaluando. En el clúster 1, por ejemplo, pudieran ser todos los visitantes que asistieron con niños a Luztopia. Eso genera una diferenciación tan crítica, que separa este clúster de los demás. Sin embargo los otros clústers se traslapan.

Datlas_ClusterPlot_4

Lo ideal es que el traslape sea mínimo o nulo. En este sentido podemos retar la cantidad de clústers que le pedimos al sistema generar. Para esto podemos usar un proceso que nos recomienda la cantidad de clúster óptimos.

Datlas_optimal_Clusters

De acuerdo a este proceso 2 son los números ideales y óptimos de clústers. También lo serían 5 ó 6, pero en realidad manejar estrategias de negocio para tantos grupos puede ser complicado. Por esta razón seleccionamos 2 como caso de uso.

Datlas_ClusterPlot_2

Finalmente, para poner en práctica nuevas estrategias de negocios, podemos identificar cuáles son las medias de cada una de las variables, cómo contrastan los clústers y algo que recomendamos es generar “avatars” o “buyers personas” que permitan comunicar hacia dentro de la organización la manera de trabajar.

TESTIMONIO

Hasta aqui la columna de hoy. Te compartimos finalmente el testimonio de nuestra colaboración con el “Clúster de Turismo NL” donde usamos técnicas como estas para generar distintos entendimientos del festival Luztopia. Además puedes revisar el podcast que grabamos con ellos si te interesa “Analitica en sector Turismo”.

 

Si te interesa conocer y contratar este tipo de servicios de “Clustering sobre resultados de encuestas o investigaciones para generar segmentos y seleccionar los mejores mensajes para tu mercado” te recomendamos visitar nuestro marketplace y solicitar una llamada de orientación. Contáctanos también en ventas@datlas.mx

Datlas_barra_suscribir

Saludos

Equipo @DatlasMX

– Keep it weird-

 

5 pasos para aprovechar los datos de tus puntos de venta y mejorar tus resultados

Hace apenas un par de años comenzamos a escuchar el famoso concepto de transformación digital en las empresas. Este concepto hace referencia al aprovechamiento y la inserción de tecnología y digitalización dentro de los procesos de negocios. Uno de los pilares más importantes dentro de esta transformación digital es el análisis de datos. En un contexto en donde los datos y la información son lo más abundante, la necesidad de aprovechar este gran bagaje de información para la toma de decisiones de negocios se ha vuelto crucial. En esta columna vamos a hablar de un sencillo proceso de 5 pasos con el que hemos apoyado a los negocios a aprovechar la generación de datos desde sus puntos de ventas para capitalizar accionables comerciales y operativos que han impactado directamente sus resultados de manera positiva.

free_Suscriber

Para comenzar es necesario un poco de contexto. Cuando hablamos de aprovechar la generación de datos existe un componente importante que responde a las condiciones actuales de los negocios: el volumen. Mientras hace unas décadas la disponibilidad de información se limitaba a un par de libros contables, hoy las empresas tienen la capacidad de consumir información externa y, sobre todo, de obtener y generar una cantidad sin precedentes de variables respecto a sus transacciones, clientes y procesos. Es precisamente aquí en donde se introduce el famoso concepto de Big Data. Sin duda hemos hablado de este concepto en entradas anteriores, pero nos gustaría citar una frase del CEO de BBVA Analytics, Fabien Girardin, que sintetiza muy bien las ventajas de este concepto diciendo: “Lo que es nuevo con el Big Data, es la cantidad de datos que nos permite entender el mundo de mejor manera, y cuando digo ‘el mundo’ me refiero a los clientes, empresas, y también como funciona la propia organización. Eso nos permite realmente medir y entender los procesos, intentar automatizarlos, y ayudar a la toma de decisiones de manera nueva”.

Ahora bien, veamos como es que estas técnicas de aprovechamiento de grandes cantidades de información se pueden capitalizar para tu negocio o la empresa donde laboras. La receta consta de 5 sencillos pasos que se ilustran de una manera magistral en la siguiente imagen:

datlas_mx_blog_data_to_wisdom

Paso #1: Los datos

La primera etapa tiene que ver precisamente con la materia prima, es decir, con los datos. Este es el punto de partida para poder derivar verdadera inteligencia. Al hablar de datos hay que tener claros dos puntos importantes: el primero de ellos es responder la pregunta ¿dónde se esconden los datos? Muchos de nuestros clientes al principio aseguran que la falta de análisis dentro de su negocio tiene su origen en la “falta de datos”, pero esto no es necesariamente real. Los puntos de venta son por excelencia grandes generadores de datos. Sin duda no son los únicos, por lo que es importante mapear el viaje completo del usuario para identificar los puntos de interacción (touch points, en inglés) en los que el cliente interactúa con el negocio y en donde podemos estar capturando información.

Tomemos como ejemplo una tienda en línea, que han visto una evolución significativa en estas circunstancias de cuarentena. Para hacerlo todavía más simple pensemos en una tienda en línea que vende artículos para bebes. En este caso, el usuario tiene un viaje que podemos simplificar: el usuario conoce la marca/productos, entra a la página web, interactúa con el catalogo de productos, selecciona los artículos que va a comprar, realiza la transacción y sale contento(a) a esperar la entrega de los artículos que adquirió. Tan solo en este simple “viaje” podemos encontrar que el punto de venta ha logrado capturar datos como: edad, sexo, email y teléfono del cliente; el canal de procedencia, el tiempo que dedico a cada sección de la página, donde hizo click, los productos que estuvo evaluando, los filtros que utilizó, los artículos relacionados directamente a aquellos que incluyó en su carrito de compra, el ticket promedio, el total de la transacción, la dirección a la que pidió que se enviaran sus productos y la información de su método de pago, entre otros muchos detalles.

datlas_mx_blog_data_sources_ecommerce

Ahora bien, la cantidad de datos es sin duda impresionante y nos permite realizar análisis más nutritivos, pero es importante cuidar el segundo punto que citábamos arriba: la estructura de los datos. ¿A qué nos referimos con la estructura? Imagina un negocio hace 50 años que tuviera cada transacción anotada en una libreta y tuviera que ponerse a buscar en los miles de libretas de los años pasados para encontrar cuantas veces el Sr. Godínez (su cliente más frecuente) ha comprado en los últimos 3 años. Me canse tan solo de escribirlo. He aquí el segundo punto medular cuando hablamos de datos. Es de suma importancia cuidar que los datos se almacenen con una cierta estructura que permita identificarlos, como el caso del cliente, con un identificador o un folio. Asimismo, es importante cuidar que las estructuras habiliten la conexión entre los datos generados desde distintos procesos o puntos de contacto del negocio con el cliente. Un ejemplo claro en el caso de la tienda en línea para bebes sería tener un catalogo de productos con SKUs y una base de datos de pedidos que integren los distintos SKUs que cada cliente incluye en sus pedidos. Y todo esto ¿para qué? Justo vamos a verlo en los siguientes pasos.

Paso #2: De datos a información (la transformación)

Una vez identificadas las fuentes de datos, sobre todo aquellos generados por el punto de ventas, pasamos a transformar esos datos en información. Cuando hablamos de transformar estos datos nos referimos a tomar la materia prima y comenzar a darle forma, comenzar a construir y descifrar la historia detrás de esos datos para poder derivar la inteligencia. Es justo en esta etapa cuando tomamos, por ejemplo, todos los datos referentes a los clientes y comenzamos a construir los perfiles o avatares. Con los datos de los productos podemos generar canastas, catálogos, familias o categorías y/o agrupaciones. Con los datos transaccionales se pueden generar reportes de resultados e indicadores. Lo importante en esta etapa es poder apalancar la estructura de datos anteriormente establecida para que la transformación de esos datos en información se pueda dar de una manera sistemática y automatizada.

datlas_mx_blog_data_information_ecommerce

Paso #3: Interconectar (integraciones)

Esta etapa se distingue por integrar a la narrativa, a la historia, las diferentes fuentes de información. Retomando el ejemplo de la tienda en línea para bebes y teniendo en cuenta que de la fase anterior obtuvimos perfiles de clientes, catálogos de productos y resultados transaccionales, podemos generar una narrativa completa en esta sección. Imaginemos que de la información anterior seleccionamos uno de los perfiles de cliente formado, ejemplo: Perfil A. Una vez seleccionado el perfil comenzamos a cruzar la información con los catálogos de productos y obtenemos una lectura de los productos más afines al perfil de cliente seleccionado. Todo esto a su vez lo integramos con la información transaccional de tal suerte que podemos construir una narrativa capaz de contar una historia como esta: “El perfil A representa a clientes mujeres de 28 a 34 años, que principalmente llegan desde redes sociales como Instagram, interesadas en productos consumibles como pañales y leche en polvo, generalmente comprando 3 artículos por pedido con un ticket promedio de $890 MXN”

datlas_mx_blog_ecommerce_customer_profile

Ahora bien, lo más importante en este punto no es poder contar la historia sino tomar esa historia para generar las preguntas o hipótesis adecuadas, es decir, tomando la narrativa del ejemplo anterior un buen análisis parte de preguntarse cosas como ¿existe alguna relación entre su edad y la afinidad por productos de marcas de alta gama? ¿Qué tan probable es que este perfil compre artículos que no sean propiamente para su bebe (regalos u obsequios)?

Paso #4: Insights (analíticos)

En esta etapa es importante partir de la definición de este famoso concepto de insights. Si bien es un término en inglés que difícilmente tiene una traducción directa al español, lo claro es que se puede definir como “el entendimiento de una causa específica y su efecto dentro de un contexto particular. Entender la naturaleza interna de las relaciones”. Basados en esta definición, este cuarto paso justo se trata de responder las preguntas planteadas en la etapa 3 y descifrar las causas y efectos de esas relaciones. Retomando el ejemplo anterior, para el caso de la relación entre edad y afinidad de marcas, podemos contarles que este cliente pudo analizar y concluir que las mamás jóvenes son más afines a marcas de alta gama porque su falta de experiencia prioriza la novedad y la mercadotecnia de las marcas de alta gama, mientras que las madres con mayor experiencia ya tienen conocimiento sobre las marcas que realmente son funcionales y priorizan su decisión de compra basadas en los atributos de confianza y usabilidad que otras marcas, no necesariamente de alta gama, les pueden proveer.

datlas_mx_blog_ecommerce_analytics

Paso #5: Inteligencia (accionables)

Después del esfuerzo de las cuatro etapas anteriores llegamos a la parte que realmente impacta los resultados: las acciones. El catalizador de los análisis que las etapas anteriores pudieron proveer llega a su culmen cuando los datos, la información, la historia, las preguntas y las respuestas se convierten en lo que conocemos como inteligencia, es decir, acciones concretas que nos ayuden a influir sobre los resultados que hemos estado analizando. Tomemos el ejemplo citado, una vez que desciframos que hay un perfil de cliente que responde a ciertos atributos podemos generar estrategias de comunicación segmentadas con mensajes afines a ese tipo de características sobre los productos, por otro lado, se pueden apalancar cupones de descuentos que ayuden a aumentar las conversiones en ciertos días de la semana o promociones especiales en los meses más críticos, etc. Con uno de nuestros clientes incluso logramos capitalizar información de entorno para poder identificar geográficamente aquellas zonas en donde se concentraban los clientes potenciales del negocio para poder accionar campañas enfocadas en esas zonas y optimizar los presupuestos promocionales.

En esta etapa es importante recordar dos cosas: la primera es que la inteligencia, como los datos, debe almacenarse de una manera estructurada y debe comunicarse a todos los grupos de interés para que se pueda capitalizar su valor en un impacto positivo a los resultados. La segunda, íntimamente relacionada a esta, es que el proceso es iterativo, es decir, nunca acaba. Al igual que la captura de datos, este proceso debe estar “vivo” debe nutrirse de nuevos datos y continuar abonando a la inteligencia, mejorar los accionables y seguir buscando nuevas fuentes de generación de datos, incluso externas a la empresa, para poder impactar los resultados de manera positiva.

datlas_mx_blog_data_business_intelligence

Finalmente, esta es una forma sencilla en la que puedes obtener valor de los datos de tu negocio. No olvides que a pesar de enumerar 5 sencillos pasos cada uno de ellos tiene una complejidad dentro de si mismo y en Datlas estamos preparados para apoyarte en cada una de las etapas con metodologías y tecnologías que son capaces de adaptarse a cualquier industria y tamaño de negocio. Cuéntanos como estas aprovechando los datos de tus puntos de venta o contáctanos para comenzar a ayudarte ¡hoy mismo!

@DatlasMX

The Last Dance: la versión que cuentan los datos

Antes de comenzar debo confesarles que soy un apasionado jugador y fanático del basketball desde que tenía 6 años. Me tocó ver, junto a mi padre, aquella temporada 1997-1998 donde Michael Jordan y los Chicago Bulls coronan su último baile (The Last Dance, en iglés) con un 6to título para Jordan, la segunda racha de 3 títulos al hilo para el equipo y una espectacular historia de 6 títulos en 8 años para la franquicia. Ahora bien, para quien no lo sepa, el famoso documental de ESPN transmitido también por Netflix y titulado “The Last Dance” relata los detalles de esta incansable hazaña de los Bulls desde 1984, cuando seleccionan a Michael Jordan en el draft, pasando por su primer título en la temporada 1990-1991 y hasta cerrar con broche de oro toda una era. Si bien el documental ha tenido un tremendo impacto, también ha desatado la polémica alrededor de Jordan desde distintos ángulos: su forma de ser, su trato con los demás, hasta cuestionar su título honorario de mejor jugador de todos los tiempos (Greatest of All Time o GOAT, por sus siglas en ingles). En esta columna vamos a dejar de lado el fanatismo, las opiniones y los sentimientos para utilizar analítica deportiva (Sports Analytics) y relatar la versión que cuentan los datos acerca del último baile. Si quieres saber que es sports analytics puedes visitar nuestro blog anterior. Si quieres enterarte como se está aplicando sports analytics en el Club de Futbol Monterrey puedes escuchar el más reciente episodio de nuestro podcast #CaféDeDatos.

free_Suscriber

El punto de partida de este análisis nace de la polémica que argumenta que la serie tiene un sesgo hacia el papel de Michael Jordan, mientras que deja “en las sombras” algunas aportaciones importantes de los distintos actores a su alrededor. Como amantes de los datos y la estadística entendemos que el resultado de cualquier situación depende de un modelo o de una formula con distintos factores y variables. En este caso el éxito de los Bulls se debe a un conjunto de cosas: desde el dueño, el gerente general, el entrenador, la ofensiva en triangulo, el talento individual de los jugadores, el juego colectivo, etc. Incluso el mismo Michael tiene una frase icónica que dice: “El talento gana partidos, pero el trabajo en equipo y la inteligencia ganan campeonatos”. Así que, veamos que dicen los datos acerca del “peso” de la variable Jordan en la ecuación del éxito de los Bulls y su último baile.

datlas_mx_the_last_dance_espn_netflix

Abril 27 de 1997 Chicago vs Washington juego número 2 de la primera ronda de play-offs de la temporada. Michael anota 55 puntos, empatando su récord de anotación desde que volviera del retiro en 1995. Tan solo en el último periodo anotó 20 de los 23 puntos del equipo. Acostumbrados a lo increíble, para muchos esta fue solo otra hazaña, pero es justo aquí donde se esconde el indicio del “efecto Jordan” para los Bulls y para el baloncesto de esa época. Más allá de lo que su marca personal de anotación representaba en el resultado final, lo impresionante es que anotó tan solo un tiro de 3 puntos y 10 puntos desde la línea de tiro libre, es decir, anotó 42 puntos en tiros de campo (con valor de 2 puntos) o media distancia, como también se les llama. ¿Y qué con esto? El secreto se llama eficiencia. En ese partido Jordan solo necesito 35 tiros para obtener los 55 puntos, mientras que el resto del equipo anotó 54 puntos tras 43 tiros.

datlas_mx_the_last_dance_mj_nbc

Mapeo de tiros en ese partido, elaborado por la NBC (Puntos rojos: tiros anotados. Puntos azules: tiros errados)

En paralelo, ese año la NBA (National Basketball Association, en inglés) comenzó a registrar datos estimados de ubicación de disparo X-Y. Así es como sabemos que mientras Jordan lideró la liga en anotaciones durante la temporada 1996-1997, terminó siendo el #57 en puntos en la pintura y #54 en tiros de 3 por juego. Nuevamente, el secreto de Jordan fue su dominio del juego desde la media distancia (definido aquí como cualquier intento entre 8 pies del borde y la línea de 3 puntos).

En 1984 cuando Michael fue seleccionado en el draft la NBA era dominada por tamaño y fuerza, 16 de los últimos 20 ganadores al galardón de jugador más valioso (MVP por sus siglas en ingles) eran centros. No había un solo guardia (posición de MJ) que hubiera ganado ese título. Jordan no solo vino a anotar muchos puntos, ganar títulos y llevar a sus colegas al límite, Michael llegó a revolucionar el juego, el dominio de la media distancia fue la clave.

Desde el punto de vista estadístico alguien podría argumentar que quizá esto se debe a la cantidad de tiros que realizaba desde esa distancia, pero Michael fuera de haber sido el más activo realizando este tipo de tiros, también fue el más eficiente. Durante la temporada 1996-1997 Glen “Big Dog” Robinson terminó segundo en el ranking de tiradores de media distancia, anotando 391 tiros. Jordan quedó en primera posición, con 547 tiros, 40% más que su sucesor.

Los datos de tiros revelan dos puntos fascinantes: MJ fue el mejor anotador de su época, pero también un tirador hiper eficiente. Este mapeo de los tiros lo demuestra, los puntos rojos representan una eficiencia superior al promedio de la liga.

datlas_mx_the_last_dance_mj_96-97_shots_percentage

He aquí la “razón” que dan los datos para que se hable con mayor preponderancia de MJ dentro del documental. Sin duda no lo hizo solo, pero si fue la variable más importante para llevar a los Bulls a hacer historia en esa época.

Por otro lado, los datos hablan también de la relevancia de estos “otros factores”. De los 59 jugadores de la NBA que intentaron al menos 300 tiros de media distancia esa temporada, Jordan ocupó el tercer lugar en eficiencia general, alcanzando el 49.5% en más de 1,100 intentos. Solo Chris Mullin y Vinny Del Negro fueron más precisos. Reggie Miller, comúnmente considerado como el mejor tirador de esa época, hizo el 42.4% de sus 484 tiros de media distancia esa temporada. Sí, Miller intentó 484 mientras Jordan anotó 547. En 1997 en la NBA literalmente estaba Michael Jordan y luego el resto.

datlas_mx_the_last_dance_mid_range_shooters_nba

Ahora bien, Mullin jugó con los Warriors de Golden State y Del Negro jugó para los Spurs de San Antonio durante la temporada 1996-1997, pero ninguno de los 2 equipos pudo siquiera calificar a los playoffs. ¿Qué quiere decir esto? Como bien lo dice Michael “…el trabajo en equipo y la inteligencia ganan campeonatos”. Durante los playoffs esa temporada hubo grandes aportaciones por parte de los compañeros de Mike. En la primera ronda contra Washington, en el juego número 3 Tony Kukoc sale de la banca a jugar 26 minutos, contra los 42 minutos de juego de Mike y lográ anotar 4 de 7 tiros de campo terminando con un 57% de eficiencia frente a 44% de Jordan. Durante el juego 6 de las finales Steve Kerr con solo 25 minutos de juego frente a los 43 minutos de MJ registró una eficiencia de 60% en tiros de campo comparada con el 42% de Michael y logró un 50% de tiros de 3 puntos, incluyendo el último triple para poner a los Bulls arriba en el marcador y consolidar la victoria y el titulo esa temporada. En ese partido Jordan tuvo solo 25% de eficiencia en tiros de 3 puntos.

Así que sin duda no se trata solo de Mike, este es un juego de equipo. El mismo da crédito a colegas como Scottie Pipen y Dennis Rodman en multiples ocasiones durante el documental. Los datos muestras incluso como otras personalidades como Kerr y Kukoc aportaron valor en momentos y situaciones claves que lograron consolidar la historia de ese mítico ultimo baile.

datlas_mx_the_last_dance_chicago_bulls_team_1998

Finalmente, no queremos cerrar sin dar un salto al presente y abordar como es que el juego que en 1984 era dominado en la pintura y que tras 1998 fue llevado a la media distancia, durante estos últimos años parece ser un juego en donde todos quieren tirar de 3 puntos. Pero para comparar manzanas con manzanas hemos de tomar a un guardia que también haya ganado múltiples títulos de MVP en los últimos años: James Harden. Quien sea fanático del baloncesto entenderá inmediatamente las diferencias, pero veámoslo desde el punto de vista de los datos: tomemos la ubicación de los tiros de Jordan en sus últimas dos temporadas y pongámoslo al lado de la ubicación de los tiros de James en sus últimas dos campañas.

datlas_mx_the_last_dance_mj_james_harden_shot_locations

Interesante, ¿no? así es como descubrimos la versión que cuentan los datos acerca de la historia de la NBA, de Michael Jordan, los Bulls de Chicago y la forma en que se jugaba baloncesto en esa época. El último baile no fue solo Jordan, fue un poco de todo, pero el catalizador fue sin duda Mike. La forma en que revolucionó el juego será una marca imborrable. Su aportación fuera de la cancha hizo también que el deporte, la imagen y la relevancia de la liga creciera de manera exponencial. Sin duda una historia digna de película, pero con un reparto tan importante como el protagonista.

Hasta aquí la columna de hoy, ¿ya viste The Last Dance? Cuéntanos tu opinión en nuestras redes sociales

@DatlasMX

 

Fuentes:

Ranking de Dashboards y Reportes por COVID-19 – Datlas Research

¿Cómo va avanzando tu análisis de datos en tu cuarentena? ¿Qué tal la numeralia? ¿Nuevos Datos? ¿Algunos nuevos descubrimientos? En esta ocasión nos toca compartir un poco a nosotros de las excelentes respuestas de la comunidad “datera”. En esta columna enlistaremos 9 dashboards/reportes usados para difundir información alrededor del COVID-19

Datlas_barra_suscribir

Algunos requisitos para que pueda calificar un  dashboards COVID-19 en el ranking es que 1) Tienen que ser actualizados al menos una vez al día, 2) Las visualizaciones integran datos de cantidad de personas infectadas y fallecidas y 3) Pueden representar cualquier cobertura geográfica. Los criterios para el ranking fueron: Atractivo de visualización, Claridad de la información e información fidedigna. Algunos “plus” es que tengan mapas y que que haya un poco de análisis dentro del tablero.

9) Facebook – Harvard

Datlas_Facebook_Harvard

Este mapa es parte del programa “Data for Good”. Se basa en información desarrollada por la Red de datos de movilidad COVID-19, coordinada por “Direct Relief” e investigadores de Harvard T.H. Chan School of Public Health, utilizando datos agregados de movimiento de población del programa Data for Good de Facebook.

  • Pros: Mensaje claro, aprovechamiento de datos de movilidas
  • Cons: Sólo USA, complejo de llegar a conclusiones, resolución a nivel Estatal

Liga: https://www.covid19mobility.org/dashboards/facebook-data-for-good/

8) Google Mobility Changes

Datlas_Google_MobilityChanges

Google liberó datos de movilidad para todo el mundo. Si quieres conocer el detalle de la iniciativa puedes revisar nuestro blog sobre el tema.

  • Pros: Información sintetizada con claridad, cobertura mundial donde Google opera, con el tiempo especificaron a nivel Estatal, al menos para México fue así
  • Cons: Son reportes no dashboards, actualización semanal no diaria, la información es en general de tráfico pero no podemos diferenciar entre tráfico a pie o en auto y no cruzan o analizan versus casos de Covid-19, una chamba que nos dejan a todos los analistas para hacerlo por separado

Liga: https://www.google.com/covid19/mobility/

7) Apple Movement

Datlas_Apple_Movement

Similar a Google, la empresa Apple liberó datos de movilidad generado por dispositivos que utilizan sistemas operativos IOS. La resolución dividió el tráfico entre coche, a pie y transporte público. También fueron los primeros que habilitaron la descarga CSV.

  • Pros: Diferenciación por tipo de tráfico, datos de movilidad actualizados de manera recurrente, descarga en CSV con detalle de información histórica
  • Cons: No hay cruce con datos de covid-19, no sugiere conclusiones y se queda a nivel país. al menos para México así funciona

Liga: https://www.apple.com/covid19/mobility

6) Facebook – Carnegie Mellon

Datlas_Facebook_CarnegieMellon

Los equipos de Facebook son variados y se dieron el lujo de trabajar con distintos laboratorios de datos de las mejores universidades del mundo. En este Caso, con Carnegie Mellon, lograron una mejor dinámica que el mapa de Harvard.

  • Pros: Selección dinámica de revisión por día desde el Dashboards, selección entre múltiples indicadores del Covid, bastante documentación sobre cada indicador, cruce de información
  • Cons: Sólo para Estados Unidos y la máxima resolución de los datos espaciales es nivel Estado

Liga: https://covid-survey.dataforgood.fb.com/#3/35/-75

5) Covid Visualizer

Datlas_Covid_Visualizer

Si hablamos de visualizaciones atractivas tenemos que voltear a ver el globo generado por el portal “Covid Visualizer” que realmente dedicó un dominio en internet exclusivamemente para este tema. Se aprecia el planeta tierra y es muy sencillo navegar entre países

  • Pros: Navegación sencilla y rápida, datos agregados con los distintos estados con los que se está midiendo el COVID-19 y actualización cada par de horas
  • Cons: Resolución a nivel País, no se puede jugar con fechas, es decir sólo se ven datos agregados a la fecha de consulta

Liga: https://www.covidvisualizer.com/

4) Our World in Data

Datlas_OurWorldInData_

Esta es la visualización que como Datlas más hemos usado en nuestros webinars y conferencias para sensibilizar a las audiencias la velocidad a la que los casos del COVID-19 crecen en relación a China

  • Pro: El manejo temporal es excelente , se pueden generar animaciones dentro de la herramienta, filtrar para cualquier país, la descarga en CSV es muy ágil y sencilla
  • Cons: Solamente se miden casos confirmados, no otro indicadores necesariamente, un par de veces nos encontramos “otros datos” en relación a la prensa nacional (caso México) y podrían usar colores más contrastantes que te ayuden a diferenciar mejor los países en el análisis

Liga: https://ourworldindata.org/grapher/covid-confirmed-cases-since-100th-case?country=ARG+BOL+BRA+CHL+COL+ECU+MEX+PER+URY+VEN

3) New York

Datlas_NYork_Dashboard

Este es otro de los casos de dashboards animados alrededor del tiempo

  • Pros: Brinda un enfoque muy claro a los países con más casos afectados, se miden 3 tipos de indicadores, entre ellos dónde hay más recuperados
  • Cons: Resolución a nivel país, sólo se usa un color en los gráficos y las dimensiones no están bien actualizadas para la cantidad de casos a la fecha

Liga: https://www.nbcnewyork.com/news/national-international/map-watch-the-coronavirus-cases-spread-across-the-world/2303276/

2) WHO: Organización mundial de salud

El pase de diapositivas requiere JavaScript.

 

Una de las obras de arte en lo que visualizaciones refiere es este tablero que es referencia mundial sobre los casos del Covid-19. Lo lamentable es que los datos han sido muy cuestionados

  • Pros: Variedad de visualizaciones, gráficos y mapas, filtros entre indicadores, contraste por regiones geo-políticas, se puede descargar datos en CSV y los colores muy bien implementados
  • Cons: No aplica alguno según los criterios establecidos. Deseable es que los usuarios pudieramos subir de resolución a nivel Estatal por país

Liga: https://covid19.who.int/

1) Johns Hopkins Covid

Datlas_Johns_Hopkins_Covid19_

Finalmente la joya de la corona, el ARCGIS que por primera vez nos dió una explicación del COVID-19 desde que se llamaba Coronavirus.

  • Pros: Cuenta con más indicadores que cualquier otro dashboards, casi cada mes le añaden nuevas visualizaciones e integra una sección de tendencias críticas que llevan a nuevos análisis y hallazgos
  • Cons: Sería genial si pudieramos ver estos datos a nivel Estado o delegación. También de alguna manera integrar las conclusiones de los análisis de movilidad de grandes compañías como Facebook, Apple o Google

Liga: https://coronavirus.jhu.edu/map.html

Datlas_barra_suscribir

Hasta aqui nuestro ranking ¿Cuál es tu orden? ¿Cómo calificarías? Si te sigue interesando qué otros nuevos aplicativos de analítica pueden impulsarse por el COVID-19 te invitamos a conocer nuestro mapa en https://datlas.mx/COVID-19/

Deja tus comentarios y comparte con tus colegas que son amantes de los Dashboards.

Saludos

Equipo Datlas

-Keep it weird-

 

Analítica en Turismo: Datos de INEGI y Datatur para construir estrategias en el sector hotelero – Datlas Research

Hemos platicado en algunas columnas anteriores la colaboración que hemos tenido realizando labores de análisis para el sector turismo. Así hemos trabajado en “13 técnicas de turismo durante el COVID19” que llevamos a Webinar y hemos dedicado columnas a cómo se le puede sacar provecho a las fuentes de datos públicas en“¿Cómo usar los datos del INEGI para una estrategia en el sector turismo?”.

Datlas_barra_suscribir

En esta columna daremos continuidad a las investigaciones para este sector que representa el 9% del PIB en México y aprovecharemos para adelantar nuestro nuevo módulo de trabajo: Dashboards Datlas. Para esto presentamos un caso de estudio desarrollando un tablero de datos en MICROSOFT POWER BI usando información facilitada por la herramienta de datos de la secretería de turismo llamada “Datatur” y datos de los negocios con actividades en hotelería de INEGI DENUE para abril del 2020.

Objetivo del proyecto

Generar una estrategia de expansión para una compañía de hoteles considerando el crecimiento de la actividad hotelera (ocupación), oportunidad económica y presencia de competidores. Esto con actividades específicas como:

  • Definición de plazas con más oportunidad de negocio para la apertura de 2 hoteles nuevos
  • Dimensionamiento de la oportunidad económica usando datos de ocupación para esa plaza
  • Generación de un listado de competidores a monitorear en los próximos 3 años

Alcances

  • Análisis a nivel nacional contemplando oportunidades para la marca “HOTELES Y VILLAS POSADAS SA DE CV” (Cliente simulado, no real)
  • Usando datos históricos de ocupación de Enero 2008 a Diciembre 2018 (Datos disponibles al 25 de abril del 2020)
  • Usando datos del DENUE INEGI para actividad hotelera de Abril 2020

Bases de datos

Usamos distintas fuentes de datos públicas y privadas. Para el análisis tuvimos que generar relaciones entre variables de distintas tablas como las que se plasman en las siguientes imágenes:

El pase de diapositivas requiere JavaScript.

Dashboard de trabajo

Seleccionamos como plataforma de trabajo a POWER BI, una herrramienta para visualizacion de datos de Microsoft bastante versatil y que además nos ofrece un par de días de versión PRO así que quisimos aprovechar en este contexto

El pase de diapositivas requiere JavaScript.

Sección 1 – Detectando plazas con oportunidad

Contrastamos la cobertura geográfica de los hoteles de los principales competidores del grupo. Detectamos a zonas de frontera con oportunidad, principalmente Chihuahua y Tamaulipas. Se tendría que competir con un formato de corta estancia que sea atractivo para los huéspedes americanos

Datlas_Dashboard_Secc1

Sección 2- Dimensionando oportunidad económica

Datlas_Dashboard_Secc3

Consideramos costos de habitación y ganancias estimadas por habitación para generar una perspectiva económica

Agregamos dos zonas, una con enfoque a una alta rentabilidad por habitación, CDMX. Y otra en zonas con mayor porcentaje de ocupación, NAYARIT. Además tiene uno de los precios promedio por noche mas altos. Estaría generando ganancias anuales de casi 100 millones de pesos anuales para la compañía

Sección 3 – Selección de plazas y competidores a seguir monitoreando

Seleccionamos 3 plazas: Nayarit, CDMX y Chihuahua. En la perspectiva anterior se justificó Nayarit. Para Chihuahua, Grupo Posadas participa con 1.20% y los competidores que podríamos monitorear para estudiar la próxima expansión serían: Deutsche Bank con 5.99%, Arrendadora Parral con 1.80% y Promotora plaza sol con 1.20%

Para CDMX, donde hay habitaciones más rentables, Posadas participa con 1.94%, siendo número uno. Nos pronunciamos por monitorear lo establecimientos de los competidores: Promotora Plaza del Sol con 1.20%, Hotel Habita con 0.75% y SixtGabie con 0.60%

Visualización final

Después de narrarles este ejemplo les podemos compartir cómo se ve esta plataforma en vivo, desde nuestra nueva plataforma de Dashboard en Datlas.

Hasta aquí la columna de hoy ¿Te interesa el turismo y la analítica dentro el sector? Tenemos algo nuevo para ti, un episodio de nuestro podcast “Café de Datos” con Mauricio Magdaleno, el Director del Clúster de Turismo de Nuevo León. En este capítulo podrás enterarte de cómo Datlas-Clúster Turismo estamos colaborando para generar nuevas iniciativas de analítica para la industria.

10. Invitado Mauricio Magdaleno - ¿Porqué es prioritario introducir analytics al turismo (CLÚSTER DE TURISMO NL)
Click aqui para escuchar el podcast: https://open.spotify.com/show/5E5kraa2xVrYdq14WOiQet

Sabemos que lo disfrutarás. Recuerda difundir este blog con tus colegas y dejarnos tus comentarios. Saludos

Equipo Datlas

– Keep it weird –

Google y Apple liberan datos de movilidad por COVID-19 – Datlas Research

**Actualización al 15 de abril del 2020 *** Apple también liberó datos de movilidad que se pueden consultar en: https://www.apple.com/covid19/mobility . Este blog considera más a fondo una revisión de los datos que liberó Google.

##########################################################################

El pasado 3 de marzo tuvimos la oportunidad de presentar el webinar “13 tácticas de respuesta para negocios en el sector turismo durante el COVID-19″ asistieron más de 200 participantes de sectores como: Hoteles, aerolineas, gobiernos municipiales, agencias de viaje, academias, entre otros. Nos encantó la dinámica de interacción, hubieron muy buenas preguntas. Gracias a todos y todas las participantes. Una de las gráficas que más llamó la atención fue la del COVID y cómo las medidas que ha tomado el país se pueden leer con nuevos datos que publicó “Google Mobility”.

En esta columna profundizaremos un poco más en estos reportes. Hablaremos del contexto de COVID-19 para México, cómo es el contraste frente a LATAM y cómo Google habilita para distintos países estos reportes que nos permiten tener lectura de cómo ha variado el tráfico de personas en ciertos sitios. Sobre todo cómo ha sucedido en casas y zonas residenciales.

Datlas_barra_suscribir

Situación del COVID-19 (1 de abril del 2020)

Aunque no es un post del COVID, si te interesa eso puedes revisar nuestras 4 columnas anteriores, si queremos empezar a poner en contexto la situación en México y como, al menos para México, los Estados o delegaciones que más le aportan al producto interno bruto nacional son los que más casos positivos han presentado. Sin duda alguna esta correlación está absorbiendo el hecho de que estos Estados son los que tienen más exposición al extranjero así como población concentrada en zonas urbanas. Condiciones que propician una mayor interacción social y por consecuencia facilidades para esparcir el virus.

Datlas_BlogGoogle_Covid19

Contraste con LATAM

En conteo de casos, a la hora sobre todo de contrastar la velocidad con la que se está esparciendo el virus por cada país, la metodología de “Our World in Data” es la que me ha parecido más convincente. El conteo para cada país comienza después del caso número 100, eso quiere decir que la tendencia para cada país ya trae 100 casos previos. Esto se hace porque la curva exponencial se va a ir viendo más marcada después del caso 100. Aunque no sea perfectamente comparable, en nuestra opinión, es una mejor manera de contrastar.

Siendo así destacamos la cantidad de casos a un lado de la cantidad de días. Para México, 1378 casos en 14 días. Mientras que Ecuador llega a 2,758 caso con 15 días. En México hay 125 millones de habitantes y Ecuador tiene sólo 17 millones. Así que en la misma cantidad de días podemos ver que las medidas en México han sido más efectivas.

Datlas_BlogGoogle_ContrasteCovid_Mx

Los datos más granulares, los datos de Google Mobility para México

México declaro emergencia nacional y “mandó a todos a sus casas” con la campaña #quedateEnCasa el domingo 29 de marzo del 2020. Sólo sectores estratégicos para la economía podrán seguir operando y con restricciones ¿Cómo este efecto se ve reflejado en la movilidad de las personas? “Google Mobility changes” preparó este reporte para ayudarte a ti y a las oficiales de salud pública para entender las respuestas a las guías de distanciamiento social. La documentación y explicación de cómo navegar en el sitio puede ser encontrado aqui.  Si te interesa saber más sobre “Location Intelligence” puedes leer nuestro blog donde profundizamos en este tema aqui.

Los datos para México son los siguientes para las categorías de:

  • Retail y recreación
  • Convenencia y farmacias
  • Parques
  • Estaciones de tránsito

Datlas_BlogGoogle_ImpactoPorMob_Mx

En general las señales son similares. Caídas de más del 45% en lo que respecta a puntos recreativos o turísticos. Esto sin duda alguna son cifras , pero detrás hay negocios y familias que han sentido la baja de personas en sus comercios.

Por la parte de Farmacias y Mercados, las medidas que la contracción no ha sido tan intensificada. En efecto hemos visto que “la vuelta al súper” es el paseo que muchas personas hacen como primera necesidad.

¿Que ha sucedido con los lugares de trabajo? Para los que existen en el registro de Google, hubo una caída de 20% comparado con el promedio de asistencia. Por otro lado hubo un crecimiento de 11% para las zonas residenciales que se tienen mapeadas.

Estos datos, después del domingo, seguramente irán acentuándose como ya ha sucedido en otros países que llevan más días en aislamiento por el COVID-19

Datlas_BlogGoogle_ImpactoPorMob_Mx2

 

Datos de Google Mobility para otros países

Esta tabla es el contraste de la dinámica de espacios de trabajo en México con respecto a otros países. Destacamos Estados Unidos e Italia por la gravedad de los casos positivos, son los países número 2 y 3, al mismo tiempo de los que llevan más tiempo con el COVID-19 (después del caso número 100). En Italia podemos apreciar la caída en asistencia a sitios de trabajo así como el fuerte incremento en zonas residenciales.

En contraste con México ,donde según Boston Consulting Group, esperamos lo peor para la 3era semana de Abril, aun nos queda campo por recorrer.

Datlas_BlogGoogle_ImpactoPorMob_Mx3

Mensajes finales

Grupo FEMSA y Grupo Modelo, las dos cerveceras más grandes del país ya mandan a todos a su casa. Hoteles han mandado a su personal a casa, algunos tratan de intensificar la rotación para darles participación del ingreso a todos. Restaurantes no hallan cómo apoyar a sus meseros que ganaban principalmente por las propinas. En general el sistema económico tiene varias fichas y la pandemia vino a generar un fuerte efecto dominó sobre mecanismos de contagio como bolsas, empresas y empleos.

Datlas_barra_suscribir

Hay que prepararnos para las semanas posteriores, para eso hemos preparado algunas tácticas. Te invitamos a revisarlo en esta columna anterior.

 

Hasta aqui la columna de hoy, si te gusto te invitamos a compartir. Si quieres acceder directamente al portal de Google Mobility para explorar cualquier país puedes dar click aqui.

Saludos

-Equipo Datlas-

Keep it weird

13 tácticas de respuesta para Restaurantes y Sector Turismo en época de COVID19 – Datlas research

Si quieres ver el webinar completo donde detallamos este blog da click aqui:

###Continuamos#######################################################

Hemos estado hablando en nuestras últimas publicaciones de “El efecto dominó de la pandemia en la economía“, también dado ejemplos de “Modelos de respuesta inmediata para equipos de rescate en época de Coronavirus“. Estos temas de investigación nos ayudaron a entender el panorama y los impactos. Otros países (que no son México) han dado estímulos a industrias. Considerando que los empresarios de pequeñas y medianas empresas en México están más solos decidimos aportar un poco en este blog. En esta nueva columna nos enfocamos más en aterrizar en tácticas y cambios operativos que negocios enfocados al servicio como restaurantes, hoteles, agencias de viajes, museos, entre otros podrían preparar para mantenerse a flote en la época de crisis que se viene. Siendo una columna de investigación iniciaremos con un poco de contexto económico para después pasar a las tácticas (Lo que quiere decir que están al final de la columna).

Datlas_barra_suscribir

Impactos al crecimiento económico

Datlas_situación_Economía

Estos datos representan los pronósticos de crecimiento económico (Variación en PIB o producto interno bruto) de algunas de las economías más importantes del mundo antes y después del COVID-19. Los crecimientos globales se esperaban para el 2020 en 2.30% , pero como resultado de la pandemia se han desviado a una contracción del -2.20%.

Para México, los últimos datos de crecimiento indicaban que estábamos en virtuales 0%. Aún así los pronósticos en el año, principalmente por el auge que se esperaba de Estados Unidos, eran de 1.10% . Sin embargo ahora lo que se espera es una caída de -5.4% (Depende la fuente, estos datos van de un conservador -1.5% hasta un 5.8%)

Al 30 de marzo de 2020, en fase 3, las principales casas de investigación económica de distintas entidades financieras estiman :

Datlas_caidaporbanco_

Líderes de opinión con mensajes sobre el COVID-19

  • La tasa de desempleo urbano aumentó a 4.61% en febrero (4.37% en enero). @JonathanHeath
  • Estamos ante un momento en el que se deben tomar decisiones rápidamente; lo que se decida tendrá importantes consecuencias @BBVA Research
  • A nivel mundial hay en promedio 2.7 camas hospitalarias por cada 1,000 habitantes China (4.2), Italia (3.4) y España (3.0) tienen más camas hospitalarias por cada 1,000 habitantes que el promedio mundial (2.7). México solo tiene 1.5 camas hospitalarias por cada 1,000 habitantes @ BBVA Research
  • La prioridad es garantizar el bienestar de los trabajadores, en este sentido, es importante dimensionar que del total de ocupados 11.8 millones no tiene acceso a atención médica y tienen ingresos por debajo de la línea de pobreza, de los cuales 2.2 millones son mayores de 60 años; es la población más vulnerable. En un escenario de alta demanda de servicios médicos potencialmente rebasarían las capacidades del INSABI que está en un incipiente proceso de creación. @ BBVA Research
  • En el escenario de distanciamiento social generalizado los sectores con mayor afectación inicial son comercio, restaurantes, transporte y turismo donde actualmente se ubican 32.7% del total de ocupados @ BBVA Research
Podcast
Escucha nuestro pocast: Café de datos. Puedes dar click aqui: https://open.spotify.com/show/5E5kraa2xVrYdq14WOiQet

Impactos a empresas en Turismo (México) y restaurantes

  • Han cerrado más de 262 hoteles en México, es decir, más de 53 mil habitaciones. Estos son datos de cadenas, pues aún falta registrar los más pequeños, detalla @b_arsuagal, Presidente del @cnet_mexico
  • POSADAS estimates the suspension of operations of 76 managed hotels (14,955 keys; 49% of its portfolio) as a result of the COVID-19 situation @GBM Morning Calls
  • AEROMEX reached an agreement with its pilots’ union (ASPA) that considers the reduction of salaries by 50%, the use of a rotation scheme for unpaid leaves, and the temporary waiver of all types of bonuses.  AEROMEX’s unused fleet of 40 planes will be working as cargo transportation for perishables, farmaceutical and tech products, among others.    @GBM Morning Calls
  • VOLAR will reduce its capacity (ASM) by half versus the schedule originally published for the rest of March and the month of April @GBM Morning Calls
  • Fuentes cercanas a la industria de restaurantes reflejan que negocios de alta gama han sufrido pérdidas de 80% (contra semana promedio). Los que “menos pierden” son los comercios que ofrecen alimentos de comida rápida y “delivery”. Los más impactados, el personal de cocina y mesero que colabora en restaurantes.
  • Algunos negocios ya comienzan a adaptarse: aprovechando sus espacios de estacionamiento, venta al coche, ampliando lineas telefónicas para recibir más pedidos a domicilio, creciendo su cobertura en medios digitales y digitalizando una mayor proporción de sus transacciones

 

Empresari@ ¿Qué acciones puedes tomar?

Sin descubrir el hilo negro, aqui compartimos 13 prácticas que sugerimos y que con base a investigación, entrevistas y crisis pasadas son recomendables:

  1. Baja los precios y  mejora atención. Buscamos incrementar frecuencia, no margen en este momento
  2. Amplia los puntos de precio en servicios ofrecidos. Mejor aún si tus precios tienen valores equivalentes a montos de billetes y/o monedas
  3. Ampliar líneas de ingreso de “upselling” (Fotografía, videos, recuerdos, playeras, dibujo, etc)
  4. Preventas con descuentos agresivos (50% o 2×1). Habilita más canales digitales para tu servicio
  5. Haz un catálogo u oferta donde claramente comuniques que el motive es recuperarte del COVID-19, conseguirás más empatía
  6. Socializa los cuidados de limpieza que has tenido así como la cantidad de personas que laboran en tu comercio. Colocar más fotos de tu equipo y empleados puede ayudar
  7. Extiende la experiencia de consumo entregando cupones, dando sugerencias para que regresen con más gente recomendada y dinámicas en redes sociales
  8. Promueve el pago con efectivo, busca manejarlo con cuidados sanitarios. Esto evitará que tengas que pagar las fees de terminales punto de venta por pagos con tarjeta
  9. El nuevo juego durante los siguientes 6 meses será sobre ahorrar costos. Renegocía plazos de deudas o pagos. También rentas. Prioriza sueldos y salarios
  10. Si es necesario, habilitar solicitudes y preaprobaciones de crédito con bancos para pagos que te permitan mantener tu negocio a flote, no lujos
  11. Aplazar adquisiciones de equipos e inversiones a tu negocio
  12. Enfócate en el mercado local/regional, comparte conocimiento con socios y aliados así como mejores prácticas. También aplica para marketing y redes sociales
  13. Prepárate para que cuando todo se normalice puedas ampliar el tiempo de estancia en tu negocio, esto hará que potencialmente gasten más los clientes

Datlas_Playbook_prelaunch

 

 

Si quieres seguir más consejos como estos, puedes descargar gratuitamente nuestro DATA PLAYBOOK hoy, sólo da click aqui. (Código de descuento: MKTPLACE100 )

 

 

Mensaje final

Es momento de dedicar más tiempo de escritorio. Aprovecha adquiriendo nuevos conocimientos, pero no sólo eso, también monetizándolos. Explora plataformas como trip advisor, cataloga tus experiencias en AIRBNB, mejora tu rating en Expedia y busca algunas cámaras o clústers locales de empresari@s con los que puedas dedicar un frente común.

Recuerda que si en estos momentos quieres preparar mejor tu estrategia de analítica o deseas utilizar tus datos para tomar las mejores decisiones a futuro puedes escribirnos a direccion@datlas.mx . Hasta aqui la columna de hoy, recuerda compartir, difundir y dejar tus comentarios

Saludos

Equipo Datlas

-Keep it weird-

Fuentes

¿Cómo usar los datos del INEGI para diseñar una estrategia en el sector Turismo? (Caso Nuevo León, México) – Datlas Research –

El Instituto Nacional de Estadística y Geografía (INEGI) es una agencia del gobierno Mexicano que coordina y reúne los principales indicadores estadísticos y geográficos del país. Es autónomo y financiado con los impuestos de los contribuyentes. Desde Datlas hemos realizado algunos casos de estudio y análisis con esta información y nos gustaría compartirte un estudio que hicimos con enfoque en “co-crear” productos para Turismo. Al mismo tiempo damos algunos datos interesantes para Nuevo León.

Datlas_barra_suscribir

El objetivo de la investigación es diseñar un análisis geoestadístico para lanzar un producto/servicio que incremente la derrama económica de los huéspedes (turistas) que visitan los hoteles de la región y que al mismo tiempo incremente su satisfacción durante su estancia en la ciudad.

Datlas_blog_turismo_inegi_1

La propuesta de negocio a evaluar es una alianza comercial entre restauranteros, museos y servicios de hospedaje que se traduzca en una mejor experiencia de estancia donde el huésped pueda tener a la mano experiencias culinarias, culturales y a precios preferenciales por quedarse en un hotel que esté dentro de la alianza.

Datlas_blog_turismo_inegi_2

Para esto consultamos el Directorio Estadístico Nacional de Unidades Económicas (DENUE), específicamente para Nuevo León, donde enfocamos la extracción de datos hacia Hoteles, restaurantes y museos. Una vez que evaluamos estas bases de datos que integran direcciones, códigos postales, tamaños y otros rasgos de cada uno de los negocios podemos responder la siguiente pregunta ¿Cuáles códigos postales tienen presencia de los 3 socios de la alianza: Hoteles, restaurantes y Museos en Nuevo León?

Datlas_blog_turismo_inegi_3
Tabla 1 . Códigos postales con presencias de Hoteles, Restaurantes y Museos

En esta tabla segmentamos por código postal (CP) las regiones que cumplen con la presencia de Hoteles, restaurantes y Museos. Para un lanzamiento piloto hace más sentido enfocarnos en regiones que tengan más potencial de éxito en donde los turistas puedan encontrar cerca de sus hoteles, en el mismo código postal, restaurantes o museos qué visitar.

Datlas_barra_suscribir

Otra variable relevante para decidir donde lanzar pudiera ser el tamaño de los hoteles. Si bien el DENUE no tiene la cantidad de habitaciones por hotel, podemos hacer una estimación con el conteo del número de empleados necesarios para la operación del negocio.

Datlas_blog_turismo_inegi_4
Tabla 2. Tamaño de hoteles considerando empleados y filtros de Tabla 1

Teniendo más sensibilidad sobre la relevancia del tamaño de los hoteles en el programa de alianzas que queremos generar podemos comunicar estos hallazgos con visualizaciones. A continuación, un ejemplo de gráfico

Datlas_blog_turismo_inegi_5
Gráfico A. Tamaño de hoteles considerando empleados y filtros de Tabla 1
% = Proporción de hoteles medianos y grandes con relación al total

Para pilotear la propuesta con más probabilidad de éxito podríamos enfocarnos en reclutar los hoteles en los códigos postales seleccionados con mayor proporción de hoteles medianos y grandes. Que nos daría una cobertura inicial del programa de alianzas para las mejores zonas de: Monterrey, Apodaca, Linares, San Pedro y San Nicolás de los Garza.

Datlas_blog_turismo_inegi_6
Gráfico B. Mapa de zonas de más oportunidad para implementar el programa de alianzas en presencia de hoteles (medianos y grandes), restaurantes y museos

Como análisis adicional podemos consultar otras bases que cuenten con una mejor actualización que la del INEGI. Por brindar un ejemplo exploramos la base de datos de YELP, una plataforma de “ratings” (evaluaciones) y directorios de atracciones en ciudades de todo el mundo.

Datlas_blog_turismo_inegi_7

Usando YELP, un directorio de restaurantes y atracciones evaluadas por una comunidad que ya ha visitado ese lugar.

YELP indexa y registra restaurantes de una gama más “Premium” por lo que sería interesante evaluar si hay oportunidad de tener un programa de alianza regular y otro premium.

Encontramos 1,050 restaurantes de gama alta evaluados en rating y nivel de precio para Nuevo León.

Datlas_blog_turismo_inegi_8
Tabla 3. Registros de Tabla 1 enriquecida con datos de YELP

Hay 3 códigos postales donde hay posibilidad de generar una experiencia de gama de alta para turistas considerando los niveles de precio y el rating promedio de los restaurantes de la zona.

Para dimensionar una oportunidad en ventas (caso de ejemplo para fines del ejercicio) asumiremos un tráfico promedio de 100 turistas al mes para cada uno de los 61 hoteles medianos-grandes analizados dando un total de 6,100 turistas.

Si cada uno participará en un programa donde pagando $300 puedes acceder a una experiencia de restaurante + hotel podríamos impactar $1.8M de MXN al sector de manera mensual.

Si de los 6,100 turistas, el 10% quisiera participar en el programa premium, podríamos generar $366k mensuales adicionales de esta fuente

Datlas_blog_turismo_inegi_9
Hay 3 códigos postales donde hay posibilidad de generar una experiencia de gama de alta para turistas considerando los niveles de precio y el rating promedio de los restaurantes de la zona.

Muchas gracias por leer este episodio de investigación. Al igual que este caso, en otras industrias es posible utilizar los datos del INEGI y otras bases de datos digitales para orientar mejor nuestras decisiones de negocio. También te puede interesar nuestro caso en el sector inmobiliario.

Si te gusto no olvides compartir  y recuerda dejar tus comentarios

Datlas_barra_suscribir

– Equipo Datlas –

Keep it weird