Archivo de la categoría: retail

Lo que esconden tus datos: Análisis de CRM para mejorar precios, catálogos, marketing y ¡más!

La vida de un negocio son sus ventas. La complejidad es que las ventas son tanto arte como ciencia. Uno de los retos más comunes cuando trabajamos con empresas o grandes corporativos es el descifrar la fórmula para construir una estrategia comercial exitosa. Sin duda en estos tiempos esa fórmula se vuelve dinámica ante las circunstancias y son muchos los elementos a configurar. Por suerte la materia prima detrás de toda la parte “científica” de esto se encuentra en nuestro elemento favorito: los datos. En esta entrada vamos a platicar acerca de las distintas formas en las que los datos comerciales y de tu CRM se pueden usar para capitalizar mejoras en precios, catálogos, marketing, programas de descuentos y mucho más.free_Suscriber

Antes de comenzar es crucial entender un poco de historia. La gestión de la relación con clientes ha sido uno de los componentes más antiguos de los negocios. La infalible pluma y papel fueron suficiente en su momento para llevar el registro básico de las ventas y los clientes. En los años 50´s llegó el famoso Rolodex (se vale buscar en Google, yo también lo descubrí recientemente) que ofrecía la capacidad de girar los registros mientras añadías nuevos clientes y actualizabas la información de otros ya existentes. El siguiente gran paso se da a inicios de los 80´s cuando llegan las bases de datos a revolucionar el proceso de consolidación de la información de los clientes, aunque a finales de esa década el aprovechamiento de estas bases de datos era aún limitado, figuraba tan solo como un directorio o Rolodex digital, con pocos insights y casi nulas interacciones de la compañía con sus clientes. Hasta inicios de los 90´s comienza la automatización de los procesos de ventas y justo en 1995 se acuña el termino Customer Relationship Management o CRM, por sus siglas en inglés. A partir de esa década comienza la profundización en los análisis y una gestión mucho más detallada e inteligente de la relación con los clientes.

El pase de diapositivas requiere JavaScript.

Ahora bien, el CRM perse es una herramienta tecnológica pero su punto de partida, como en todo, son los datos que se alimentan en él. En este sentido la primera etapa importante antes de analizar los datos comerciales y de CRM es precisamente generarlos. Dentro de esta etapa de recolección de datos es importante establecer los procesos de negocio en donde interactúas con tu cliente y se abre la posibilidad de ese intercambio de datos o de información. Asimismo, es crucial que como negocio definas los datos “necesarios” y los datos “deseados” que buscas obtener de tus clientes para poder comenzar a llenar este CRM. Finalmente, debes establecer una mecánica de incentivos para poder propiciar de manera natural y benéfica para ambas partes el hecho de compartir estos datos.

Vamos a aterrizarlo en un caso de negocio. Eugenio, uno de nuestros clientes dentro de la industria energética, nos pidió apoyo para generar su estrategia go-to-market de su nuevo panel solar. Esta claro que analizamos sus datos comerciales y de su CRM, pero lo interesante aquí es resaltar los 3 atributos que mencionamos en el párrafo anterior. Eugenio tenia claro que uno de sus procesos de negocio mas importantes era el hecho de la interacción del cliente en su página web, dado que por la naturaleza del producto y el servicio que lo acompaña, el anaquel digital resultaba muy relevante. Después estableció que los datos que necesitaba obtener del cliente eran su ubicación y el consumo promedio de luz, aparte de los datos de contacto. Fue así como se le ocurrió armar una “calculadora de ahorro” dentro de su sitio web como un incentivo para que el cliente pudiera compartir estos y otros datos a cambio de un beneficio directo que era el calculo del monto estimado de ahorro que podía obtener con el nuevo panel solar que se estaba ofreciendo.

datlas_mx_blog_crm_customer_master_data_management-01

Hasta aquí se ha logrado establecer una dinámica para obtener los datos, el paso siguiente es precisamente adentrarnos en los datos. Cuando estamos analizando datos comerciales y de CRM es importante hacer un diagnostico y establecer el inventario completo de variables con el que vamos a estar trabajando, es decir, a pesar de que para un negocio un medio de contacto sea el teléfono, para otro podrá ser el correo electrónico o incluso ambos. En este sentido el punto de partida es entender muy bien la base de datos, las variables con las que vamos a estar “jugando” y comenzar a establecer algunas categorías de datos como, por ejemplo: perfil, canal fuente, dinámica. En el caso de Eugenio por ejemplo cuando hablamos de la categoría perfil estamos agrupando todos los datos que hablan del cliente como, por ejemplo: su nombre, su correo, su teléfono, el lugar donde vive, etc. Cuando hablamos de canal fuente estamos hablando de la forma en la que conoció y se entero de la empresa, como llego, si tuvo algún costo esa publicidad por la que se enteró, etc.

Finalmente, en la categoría de dinámica es necesario hacer una profundización todavía más importante ya que nos referimos a los datos que distinguen y diferencian a los clientes a lo largo de las etapas del proceso o ciclo de ventas. En este caso cuando hablamos de proceso o ciclo de ventas es relevante comprender la metodología que esta utilizando el negocio. Sabemos que existe mucha literatura, estudios y propuestas acerca de ventas, procesos y ciclos, algunas de 5 pasos, 7 etapas, 9 fases, etc. Aquí lo esencial es entender la forma en la que el negocio distingue entre un cliente que esta en la etapa 1 y como es que pasa a estar en la etapa 2, por ejemplo. En el caso de Eugenio, ellos tenían una gestión muy sencilla con 3 grandes etapas: lead, prospecto y cliente (o venta). En su equipo definieron un lead como todo aquel individuo que haya mostrado interés en su producto a través de compartir su información. Esa persona no podía pasar a la etapa de prospecto si no habían ocurrido 3 cosas: había entrado en contacto con un representante de ventas, había aceptado que se le generara una cotización y ya se le había generado y comunicado esa cotización. Finalmente se convertía en cliente (o venta) una vez que aceptada dicha propuesta o cotización y se generaba la factura de venta. De esta manera, se logra una claridad en cuanto a los datos que permite entender a quien realiza el análisis donde buscar y que datos utilizar al momento de atacar los distintos retos o hipótesis que se planteen al inicio del ejercicio.

El pase de diapositivas requiere JavaScript.

En cuanto se tiene claro los datos y las estructuras del CRM y la información comercial es momento de apalancarla para atacar los retos del negocio. En este caso, por ejemplo: mejorar precios, catálogos, marketing y programas de descuentos.

En el caso de mejoras o cambios en precio, tomando como ejemplo a Eugenio y su negocio, es de suma importancia poder apalancar los datos que tienen que ver directamente con la conversión, es decir, con la parte del proceso en el que pasa de prospecto a cliente. Lo que se hace aquí es agrupar a aquellos individuos que hayan tenido como principal indicador de “no conversión” un tema del precio y utilizar los datos del CRM para generar una segmentación. Ahora bien, cuando nos referimos a segmentación no estamos hablando del típico hombre/mujer, edad, etc. Sino un tema de necesidades, es decir, hay que descifrar que nos pueden decir los datos acerca de la necesidad o el beneficio percibido por el cliente en contraste con el precio. Por ejemplo, en el caso de Eugenio, ellos tenían claro el consumo promedio, con lo que pudieron hacer un análisis y encontraron una correlación entre consumo promedio y el precio estándar del nuevo panel, de tal forma que se dieron cuenta que para el punto de precio del nuevo panel el segmento de clientes al que debían dirigirse se distinguía por tener una necesidad de ahorro a partir de cierto consumo. ¿Y eso que con el precio? Precisamente estos insights permitieron que se buscaran alternativas para generar productos con un punto de precio más bajo para ese segmento detectado o incluso explorar alternativas como financiamientos, arrendamientos o planes de pagos que pudieran tener un impacto indirecto en la percepción del precio por parte del cliente.

datlas_mx_blog_crm_pricing

Por otro lado, en el tema de mejoras al catálogo de productos el acercamiento al reto debe darse de forma distinta. Retomando el ejemplo de Eugenio y su negocio, para este punto estaríamos enfocándonos en analizar los datos dentro de las etapas de lead y prospecto, para destacar cuales fueron aquellos productos en los que las personas mostraron más interés. Igualmente cabe la posibilidad de una segmentación por necesidades. Si analizamos, por ejemplo, las palabras claves o los anuncios utilizados en las campañas de generación de leads y las cruzamos con términos relacionados nos podríamos dar cuenta, como Eugenio, que existe un particular segmento de clientes que no solo está interesado en paneles, sino que en el contexto de su búsqueda esta preocupado por el medio ambiente, busca alternativas de energía sustentables, renovables, etc. De tal suerte que pudiera explorarse, haciendo quizá un A/B testing, la forma de incluir dentro del catalogo de productos unos focos o bombillas de tecnología lead ya que consumen menos energía, iluminan más, etc. De esta forma hay un impacto directo en el catalogo de productos.

datlas_mx_blog_consultoria_crm_catalogo

Finalmente, para el tema de marketing, que sin duda es todo un universo y un mundo en sí mismo, existen bastantes formas de apalancar los datos comerciales y del CRM para enfocar mejor las campañas de mercadotecnia. En el caso de Eugenio, e incluso para nosotros, la información de la fuente desde la que se genero ese lead ha sido muy importante para discriminar entre los distintos canales de difusión y marketing. Igualmente, los datos del perfil del cliente nos han ayudado a definir áreas geográficas, zonas, regiones en donde enfocar puntualmente las campañas. Complementando con el punto anterior y apalancando incluso también información de la fase de cliente (o venta) se pudieran analizar atributos o características claves que el cliente percibe y expresa acerca del producto como para ajustar los mensajes, las frases y los anuncios en términos de lenguaje, beneficios a comunicar y formas de realizar el acercamiento.

Así que estas son algunas de las formas en las que hemos apoyado a nuestros clientes a aprovechar toda la información comercial y de su CRM para generar mejoras que impacten en los resultados de su negocio. Si estas interesado en explorar algo como esto te invitamos a visitar nuestro Marketplace y agendar una sesión con nosotros para platicar al respecto y ver la forma en que pudiéramos ayudarte.

Hasta aquí la columna de hoy, gracias y no dejes de compartirnos tu opinión en redes sociales

@DatlasMX

 

A/B Testing y métodos de experimentación en aplicaciones comerciales – Datlas Research

En recientes columnas hemos estado introduciendo métodos de negocios que han sido alterados por la analítica de datos. Tales como: Go-To-Market, Digitalización de anaqueles en E-commerce, Clustering para Segmentos de cliente y en esta ocasión queremos darle apertura al A/B Testing (Experimentación A/B).

A/B Testing es un método de experimentación que se puede utilizar en aplicaciones comerciales como promociones, programas de lealtad y descuentos. Este tipo de pruebas se conocen en otras ciencias como prueba aleatoria de control y es una herramienta poderosa para desarrollo de productos, iniciativas comerciales o de marketing.

Datlas_barra_suscribir

Esta columna te va a interesar si eres alguien que activamente está buscando validar si una campaña comercial o de marketing tiene éxito o no.

DatlaS_ab-testing

Definición de A/B Testing

Es una herramienta útil para estimar el ROI (retorno sobre inversión) así como proveernos de un panorama de causalidad que nos ayude a justificar si un proyecto debe o no debe ser escalado dado los resultados de ciertas pruebas de hipótesis.

Normalmente contrastamos la conducta entre 2 tipos de grupos con características similares: Grupo de control y grupo de tratamiento. En realidad pueden ser más, pero el punto es tener grupos a los que se les aplica distintos tratamientos que son contrastantes entre sí. Por ejemplo,en un experimento para bajar de peso, al grupo A ( De control) se le controló su dieta y al grupo B (De tratamiento) además de su dieta se le aplicó una rutina de ejercicios. Al final, si el grupo B tuvo un resultado más cercano al objetivo de bajar de peso podríamos concluir que el tratamiento aplicado al grupo B es más exitoso que el del grupo A.

Errores comunes a considerar

Siguiendo con el ejemplo los datos se podrían ver de esta manera

Datlas_blog_ABTesting

Con la mano en la cintura vamos a reportar que los tratamientos al grupo B hacen que bajes más kilos. Pero… un momento ¿Pudieran existir errores si concluimos algo así?

  • Error Tipo 1 – Conclusión fallida donde decimos que la intervención fue exitosa, cuando en realidad no lo fue.  Erróneamente asociamos el plan de alimentación como factor causal cuando algunos integrantes bajaron de peso porque, por ejemplo, su tipo de ejercicio en esa hora fue funcional o HIT mientras otros integrantes sólo caminaban. A esto se le llama también falsos positivos.
  • Error tipo 2 – Falsamente concluir que la intervención fue no exitosa.  A algunos miembros el plan de alimentación no les funcionó. Pero hay factores externos como el tipo de aceites que usan en la preparación o las bebidas que toman para poder llegar a una conclusión completa.

Estos errores van a suceder cuando queremos sacar conclusiones para toda una población a partir de una muestra. Sólo hasta que entendemos el verdadero dimensionamiento de nuestros resultados deberíamos de estar tomando decisiones de impacto de negocio.

Ejemplo de casos de uso

  • Campañas de marketing por correo o mensajes de texto (SMS)
  • Programas de lealtad optimizando las promociones para lograr mayor redención
  • Medicina para entender si funciona o no una prueba
  • E-commerce para saber si algún cambio al aparador digital generaría mayor compra

Caso de estudio

El orden será primero establecer un ejercicio hipótesis acompañado de su diseño de experimento. Después trabajaremos en métodos aleatorios para generar muestras, justificar tamaños de muestras y finalmente seleccionar un método de mejoras.

 

Datlas_blog_abtesting_Exitoso_fracaso

Como otros problemas de negocios, este proceso inicia generando hipótesis considerando la población de estudio, la intervención a realizar, los indicadores para comparar entre grupos, el resultado de lo que estás midiendo y la selección del tiempo en el que se va a realizar la medición. Por sus siglas en inglés PICOT (Population, Intervention, comparison, outcome, time).

Por ejemplo, si tenemos un sitio de e-commerce donde queremos experimentar para lograr mayor conversión (visitantes que terminando comprando en el sitio)  generando cambios la visualización de nuestro “anaquel virtual”. Para esto activaremos 2 anaqueles, el actual y el nuevo.  La hipótesis nula (H0) sería que las personas que vean el nuevo aparador virtual en nuestro sitio de e-commerce no tendrán mayor conversión comparados con los que vean el aparador actual. Por otro lado la hipótesis alternativa (H1) establece que los visitantes al sitio de e-commerce que vean el nuevo anaquel tendrán tasas de conversión más alta que  quienes vean el aparador actual.

Una vez concluido el ejercicio de formular hipótesis pasamos a generar muestras aleatorias. Buscaremos que las muestras sean balanceadas, donde ningún segmento este sobre-representado (usuarios que entran de móvil vs. usuarios que entran desde ordenador de escritorio).  Después será estimar el tamaño correcto de los grupos. Existen distintos métodos estadísticos para el cumplimiento de estas pruebas que puedes revisar como clustering, ICT o aplicar random a variables en R o Python. Claro, después de esto se recomienda validar que las distribuciones sean normales para comprobar aleatoriedad.

Finalmente la etapa más crítica será la de medición. Donde desde muchos ángulos tendremos que pensar bajo qué criterios evaluar el experimento. Considerar todas las excepciones o pormenores. En seguimiento al ejemplo del e-commerce: Grupos de edad relacionadas a la conversión, medios de pago, tiempos de entrega, entre otros para verdaderamente concluir el caso de éxito

Conclusión

Normalmente cuando concluimos accionables sólo con información descriptiva nos vemos limitados para llegar a conclusiones globales. En el negocio, a veces le invertimos a una prueba 3 semanas para una decisión que podría tener impacto sobre más de $1M o la existencia misma del negocio. Seguir los pasos del método de A/B testing te ayudará para reportar si una iniciativa es o no exitosa. Te recomendamos asesorarte con expertos para manejar adecuadamente los datos y sobre todo generar métricas que puedan abrir la conversación de cómo mejorar las iniciativas. Y así, finalmente, poder calcular un valor como retorno de inversión con una consideración de errores robusta.

Platica con nosotros y contáctanos en ventas@datlas.mx o en nuestro sitio web mediante el marketplace: https://www.datlas.mx/marketplace/

Fuentes:

E-commerce: Digitalización de anaqueles y analítica de datos

A inicios de abril del 2020, en pleno comienzo de la pandemia mundial del COVID-19 escribimos una columna introductoria al tema de comercio electrónico donde establecimos un plan muy sencillo para iniciar tu e-commerce, atendiendo las típicas dudas de inicio como ¿es mejor usar un canal existente o crear el mío? ¿cuál plataforma es la más indicada? Y ¿Dónde queda la analítica? Te invitamos a echarle un vistazo si no has tenido oportunidad, porque justo el día de hoy estaremos profundizando en este tema para dar consejos más puntuales respecto a la digitalización de los anaqueles y la recolección de datos dentro de estas aplicaciones.

free_Suscriber

El hilo conductor de la columna de hoy será el caso de uno de nuestros clientes, Patricio, que el año pasado decidió llevar su negocio físico al mundo digital. Un negocio familiar con varias sucursales a lo largo de Nuevo León y con un reconocimiento de marca en toda la zona norte del país. El reto en ese momento era ¿cómo continuar con el crecimiento que había tenido durante los últimos años? y el entonces nuevo director general puso la mira en el canal digital. Siendo así comenzamos la aventura. El gran problema de inicio es que los emprendedores o negocios creen que incursionar en el mundo digital es tan sencillo como subir una foto a sus redes sociales, o incluso están en una posición tan cómoda en términos de recursos que destinan un presupuesto directamente a la ejecución sin haber realizado una planeación adecuada. La digitalización de los anaqueles trae consigo un esfuerzo equivalente a montar una nueva sucursal física, aunque con sus retos particulares. Así que el viaje comenzó con la planeación.

Planeación

Existen distintas metodologías para planeación estratégica y gestión de proyectos. En nuestro caso, como se han dado cuenta, preferimos las metodologías agiles. Trabajando con Patricio no fue la excepción. Nos sentamos un día y planteamos los requisitos necesarios para poder generar un producto mínimo viable (MVP por sus siglas en inglés) de la tienda en línea. Las características que tomamos en cuenta para plantear esta primera fase, que denominamos prueba de concepto, fueron: productos, ticket promedio esperado e incentivos de compra, cobertura geográfica inicial y el grupo de control para prueba.

Al hablar de productos es importante destacar que este era un negocio en marcha, con un catalogo de más de 500 SKUs por lo que hacer una selección de productos inicial para digitalizar nuestro anaquel es importante. En este caso decidimos catalogar el top 10 de productos más vendidos. Otro factor clave en la digitalización de anaqueles es precisamente la presentación. Todo esto incluye detalles como: las fotografías, las descripciones de cada producto, así como detalles de logística, entrega, etc. Pero en este caso no vamos a profundizar tanto en los accionables operativos. Una vez definidos los productos pasamos a establecer un ticket promedio y un incentivo de compra, esta parte es crucial para nosotros ya que es la manera en la que el cliente obtiene un retorno “inmediato”. Si bien este retorno no es propiamente un ingreso marginal, lo que buscamos con esto es la validación en el mercado, es decir, probar que hay apetito por los productos y que existe un mercado dispuesto a consumir por medio de este nuevo canal en el que estamos incursionando. En este caso, por ejemplo, establecimos dar un incentivo de envío gratis a aquellas personas cuyo ticket promedio fuera de $300 MXN o más. Para el tema de cobertura geográfica se definió iniciar con el municipio de Monterrey, que era la zona más conocida y con mayor control para Pato y su equipo. Finalmente, se definió un grupo de control, es decir, un grupo de personas con las que pudiéramos tener un contacto más directo durante esta primera fase de validación para poder obtener retroalimentación acerca de todo el viaje del usuario y establecer, desde inicio, las adecuaciones o mejoras necesarias para poder asegurar la satisfacción del cliente a lo largo de su experiencia de compra por medio de este nuevo canal digital.

datlas_mx_ecommerce_anaquel_digital

Ahora bien, todos estos detalles de la planeación abonan directamente a responder las preguntas planteadas en la entrada anterior acerca de la selección del canal y la plataforma especifica. Muchos negocios encuentran que sus soluciones pertenecen a un nicho tan especifico de mercado que prefieren montar su propio canal digital, en lugar de adherirse a uno existente. De igual forma, hay empresas que se decantan por una cierta plataforma de e-commerce ya que les agrada más la interfaz con la que pueden gestionar su catálogo, hacer cambios, activar incentivos de compra, etc. Es aquí en donde radica realmente la importancia de la planeación ante un proyecto de comercio electrónico.

De prueba de concepto a prueba piloto

La siguiente “parada” del viaje fue denominada prueba piloto. Básicamente tomamos la tienda en su modo MVP y fuimos escalando. El primer paso natural fue incluir nuevos productos o SKUs, pasando de 10 a más 300 productos de una semana a otra. Pero lo más interesante en esta fase fue integrar las sucursales, los puntos de venta físicos, que ya tenia el negocio como puntos de entrega y recolección de los productos adquiridos por medio de la tienda en línea. ¿Suena familiar el pick & go? Justo fue esa misma lógica la que tomamos para validar en esta segunda etapa. Sin duda las circunstancias de cuarentena y distanciamiento hoy hacen más necesaria y lógica una opción de este estilo, pero en aquellas condiciones era necesario validarlo y lo logramos de forma exitosa.

Asimismo, en esta etapa entramos al tema de analítica de datos. Sin duda desde la fase inicial de MVP establecimos los puntos de contacto de los clientes a lo largo de todo el viaje de compra y los datos que serían necesarios y posibles de recolectar de ellos para poder realizar la transacción de forma satisfactoria. En la fase anterior estábamos trabajando con un grupo de control, poca muestra y contacto directo, pero llegados a este punto se abrió un poco más el panorama y empezamos a registrar transacciones de manera más abundante. Siendo así fue necesario adentrarnos en esta recolección de datos para poder establecer algunas iniciativas de analítica.

datlas_mx_ecommerce_analytics

Uno de los ejemplos que incluso mencionamos en la columna anterior es la parte de análisis de categorías. Tomando este caso lo que hicimos fue, establecer dentro del escalamiento del catalogo de productos las categorías que iban a regir el orden de dicho catálogo, es decir, si fuera ropa seria algo así como: ropa de hombre, ropa de mujer, ropa de niños, ropa de bebe. De la misma manera establecimos alrededor de 5 categorías para los productos del negocio de Patricio, de tal suerte que podíamos tener lectura desde la plataforma de e-commerce y Google analytics, sobre el tráfico de personas que estaba viendo e interactuando dentro de cada categoría, así como la cantidad de transacciones de productos que pertenecían a esa misma categoría. Con todo esto, fuimos capaces de descifrar cuales eran las categorías más “importantes” para los clientes en línea y se generaron mejoras como: posicionamiento dentro del anaquel en digital, mejores incentivos de compra, recomendaciones o sugerencias dentro de esa categoría, etc.

Lanzamiento oficial, expansión y gestión continua

Finalmente, ya teníamos una tienda en línea funcional, con un catalogo de productos robusto, un anaquel digital atractivo y un sistema de recolección de datos capaz de generar analíticos e inteligencia accionable para capitalización directa sobre ventas. Llegados a este punto las actividades claves fueron ampliar la cobertura geográfica de servicio, es decir, integrar entregas en nuevos municipios, estados, etc. Y comenzar a gestionar la creación del CRM (Customer Relationship Manager, por sus siglas en inglés). Este último punto resulta ser clave para el crecimiento del negocio en línea ya que, haciendo la analogía con el mundo físico, el CRM es lo que te permite conocer a tu cliente y entender detalles como ¿de dónde vino? ¿qué ha comprado? ¿con qué frecuencia? Etc. Detalles que al final del día son importantes para generar estrategias de recomendación, descuentos o incluso nuevos lanzamientos. Pero de momento no tocaremos el tema ya que justo tendremos una columna completa especialmente dedicada a la construcción y gestión de CRM muy pronto, mantente atento para que no te la pierdas.

Finalmente, si estas incursionando en el mundo digital o ya estas dentro de él no olvides que tenemos el Data Playbook Vol. II una guía para construir una estrategia de big data para tu negocio. ¡Obtenlo completamente GRATIS en nuestro Marketplace!

Datlas_Playbook_prelaunch

No olvides seguirnos en redes sociales y contarnos tu experiencia

@DatlasMX

5 pasos para aprovechar los datos de tus puntos de venta y mejorar tus resultados

Hace apenas un par de años comenzamos a escuchar el famoso concepto de transformación digital en las empresas. Este concepto hace referencia al aprovechamiento y la inserción de tecnología y digitalización dentro de los procesos de negocios. Uno de los pilares más importantes dentro de esta transformación digital es el análisis de datos. En un contexto en donde los datos y la información son lo más abundante, la necesidad de aprovechar este gran bagaje de información para la toma de decisiones de negocios se ha vuelto crucial. En esta columna vamos a hablar de un sencillo proceso de 5 pasos con el que hemos apoyado a los negocios a aprovechar la generación de datos desde sus puntos de ventas para capitalizar accionables comerciales y operativos que han impactado directamente sus resultados de manera positiva.

free_Suscriber

Para comenzar es necesario un poco de contexto. Cuando hablamos de aprovechar la generación de datos existe un componente importante que responde a las condiciones actuales de los negocios: el volumen. Mientras hace unas décadas la disponibilidad de información se limitaba a un par de libros contables, hoy las empresas tienen la capacidad de consumir información externa y, sobre todo, de obtener y generar una cantidad sin precedentes de variables respecto a sus transacciones, clientes y procesos. Es precisamente aquí en donde se introduce el famoso concepto de Big Data. Sin duda hemos hablado de este concepto en entradas anteriores, pero nos gustaría citar una frase del CEO de BBVA Analytics, Fabien Girardin, que sintetiza muy bien las ventajas de este concepto diciendo: “Lo que es nuevo con el Big Data, es la cantidad de datos que nos permite entender el mundo de mejor manera, y cuando digo ‘el mundo’ me refiero a los clientes, empresas, y también como funciona la propia organización. Eso nos permite realmente medir y entender los procesos, intentar automatizarlos, y ayudar a la toma de decisiones de manera nueva”.

Ahora bien, veamos como es que estas técnicas de aprovechamiento de grandes cantidades de información se pueden capitalizar para tu negocio o la empresa donde laboras. La receta consta de 5 sencillos pasos que se ilustran de una manera magistral en la siguiente imagen:

datlas_mx_blog_data_to_wisdom

Paso #1: Los datos

La primera etapa tiene que ver precisamente con la materia prima, es decir, con los datos. Este es el punto de partida para poder derivar verdadera inteligencia. Al hablar de datos hay que tener claros dos puntos importantes: el primero de ellos es responder la pregunta ¿dónde se esconden los datos? Muchos de nuestros clientes al principio aseguran que la falta de análisis dentro de su negocio tiene su origen en la “falta de datos”, pero esto no es necesariamente real. Los puntos de venta son por excelencia grandes generadores de datos. Sin duda no son los únicos, por lo que es importante mapear el viaje completo del usuario para identificar los puntos de interacción (touch points, en inglés) en los que el cliente interactúa con el negocio y en donde podemos estar capturando información.

Tomemos como ejemplo una tienda en línea, que han visto una evolución significativa en estas circunstancias de cuarentena. Para hacerlo todavía más simple pensemos en una tienda en línea que vende artículos para bebes. En este caso, el usuario tiene un viaje que podemos simplificar: el usuario conoce la marca/productos, entra a la página web, interactúa con el catalogo de productos, selecciona los artículos que va a comprar, realiza la transacción y sale contento(a) a esperar la entrega de los artículos que adquirió. Tan solo en este simple “viaje” podemos encontrar que el punto de venta ha logrado capturar datos como: edad, sexo, email y teléfono del cliente; el canal de procedencia, el tiempo que dedico a cada sección de la página, donde hizo click, los productos que estuvo evaluando, los filtros que utilizó, los artículos relacionados directamente a aquellos que incluyó en su carrito de compra, el ticket promedio, el total de la transacción, la dirección a la que pidió que se enviaran sus productos y la información de su método de pago, entre otros muchos detalles.

datlas_mx_blog_data_sources_ecommerce

Ahora bien, la cantidad de datos es sin duda impresionante y nos permite realizar análisis más nutritivos, pero es importante cuidar el segundo punto que citábamos arriba: la estructura de los datos. ¿A qué nos referimos con la estructura? Imagina un negocio hace 50 años que tuviera cada transacción anotada en una libreta y tuviera que ponerse a buscar en los miles de libretas de los años pasados para encontrar cuantas veces el Sr. Godínez (su cliente más frecuente) ha comprado en los últimos 3 años. Me canse tan solo de escribirlo. He aquí el segundo punto medular cuando hablamos de datos. Es de suma importancia cuidar que los datos se almacenen con una cierta estructura que permita identificarlos, como el caso del cliente, con un identificador o un folio. Asimismo, es importante cuidar que las estructuras habiliten la conexión entre los datos generados desde distintos procesos o puntos de contacto del negocio con el cliente. Un ejemplo claro en el caso de la tienda en línea para bebes sería tener un catalogo de productos con SKUs y una base de datos de pedidos que integren los distintos SKUs que cada cliente incluye en sus pedidos. Y todo esto ¿para qué? Justo vamos a verlo en los siguientes pasos.

Paso #2: De datos a información (la transformación)

Una vez identificadas las fuentes de datos, sobre todo aquellos generados por el punto de ventas, pasamos a transformar esos datos en información. Cuando hablamos de transformar estos datos nos referimos a tomar la materia prima y comenzar a darle forma, comenzar a construir y descifrar la historia detrás de esos datos para poder derivar la inteligencia. Es justo en esta etapa cuando tomamos, por ejemplo, todos los datos referentes a los clientes y comenzamos a construir los perfiles o avatares. Con los datos de los productos podemos generar canastas, catálogos, familias o categorías y/o agrupaciones. Con los datos transaccionales se pueden generar reportes de resultados e indicadores. Lo importante en esta etapa es poder apalancar la estructura de datos anteriormente establecida para que la transformación de esos datos en información se pueda dar de una manera sistemática y automatizada.

datlas_mx_blog_data_information_ecommerce

Paso #3: Interconectar (integraciones)

Esta etapa se distingue por integrar a la narrativa, a la historia, las diferentes fuentes de información. Retomando el ejemplo de la tienda en línea para bebes y teniendo en cuenta que de la fase anterior obtuvimos perfiles de clientes, catálogos de productos y resultados transaccionales, podemos generar una narrativa completa en esta sección. Imaginemos que de la información anterior seleccionamos uno de los perfiles de cliente formado, ejemplo: Perfil A. Una vez seleccionado el perfil comenzamos a cruzar la información con los catálogos de productos y obtenemos una lectura de los productos más afines al perfil de cliente seleccionado. Todo esto a su vez lo integramos con la información transaccional de tal suerte que podemos construir una narrativa capaz de contar una historia como esta: “El perfil A representa a clientes mujeres de 28 a 34 años, que principalmente llegan desde redes sociales como Instagram, interesadas en productos consumibles como pañales y leche en polvo, generalmente comprando 3 artículos por pedido con un ticket promedio de $890 MXN”

datlas_mx_blog_ecommerce_customer_profile

Ahora bien, lo más importante en este punto no es poder contar la historia sino tomar esa historia para generar las preguntas o hipótesis adecuadas, es decir, tomando la narrativa del ejemplo anterior un buen análisis parte de preguntarse cosas como ¿existe alguna relación entre su edad y la afinidad por productos de marcas de alta gama? ¿Qué tan probable es que este perfil compre artículos que no sean propiamente para su bebe (regalos u obsequios)?

Paso #4: Insights (analíticos)

En esta etapa es importante partir de la definición de este famoso concepto de insights. Si bien es un término en inglés que difícilmente tiene una traducción directa al español, lo claro es que se puede definir como “el entendimiento de una causa específica y su efecto dentro de un contexto particular. Entender la naturaleza interna de las relaciones”. Basados en esta definición, este cuarto paso justo se trata de responder las preguntas planteadas en la etapa 3 y descifrar las causas y efectos de esas relaciones. Retomando el ejemplo anterior, para el caso de la relación entre edad y afinidad de marcas, podemos contarles que este cliente pudo analizar y concluir que las mamás jóvenes son más afines a marcas de alta gama porque su falta de experiencia prioriza la novedad y la mercadotecnia de las marcas de alta gama, mientras que las madres con mayor experiencia ya tienen conocimiento sobre las marcas que realmente son funcionales y priorizan su decisión de compra basadas en los atributos de confianza y usabilidad que otras marcas, no necesariamente de alta gama, les pueden proveer.

datlas_mx_blog_ecommerce_analytics

Paso #5: Inteligencia (accionables)

Después del esfuerzo de las cuatro etapas anteriores llegamos a la parte que realmente impacta los resultados: las acciones. El catalizador de los análisis que las etapas anteriores pudieron proveer llega a su culmen cuando los datos, la información, la historia, las preguntas y las respuestas se convierten en lo que conocemos como inteligencia, es decir, acciones concretas que nos ayuden a influir sobre los resultados que hemos estado analizando. Tomemos el ejemplo citado, una vez que desciframos que hay un perfil de cliente que responde a ciertos atributos podemos generar estrategias de comunicación segmentadas con mensajes afines a ese tipo de características sobre los productos, por otro lado, se pueden apalancar cupones de descuentos que ayuden a aumentar las conversiones en ciertos días de la semana o promociones especiales en los meses más críticos, etc. Con uno de nuestros clientes incluso logramos capitalizar información de entorno para poder identificar geográficamente aquellas zonas en donde se concentraban los clientes potenciales del negocio para poder accionar campañas enfocadas en esas zonas y optimizar los presupuestos promocionales.

En esta etapa es importante recordar dos cosas: la primera es que la inteligencia, como los datos, debe almacenarse de una manera estructurada y debe comunicarse a todos los grupos de interés para que se pueda capitalizar su valor en un impacto positivo a los resultados. La segunda, íntimamente relacionada a esta, es que el proceso es iterativo, es decir, nunca acaba. Al igual que la captura de datos, este proceso debe estar “vivo” debe nutrirse de nuevos datos y continuar abonando a la inteligencia, mejorar los accionables y seguir buscando nuevas fuentes de generación de datos, incluso externas a la empresa, para poder impactar los resultados de manera positiva.

datlas_mx_blog_data_business_intelligence

Finalmente, esta es una forma sencilla en la que puedes obtener valor de los datos de tu negocio. No olvides que a pesar de enumerar 5 sencillos pasos cada uno de ellos tiene una complejidad dentro de si mismo y en Datlas estamos preparados para apoyarte en cada una de las etapas con metodologías y tecnologías que son capaces de adaptarse a cualquier industria y tamaño de negocio. Cuéntanos como estas aprovechando los datos de tus puntos de venta o contáctanos para comenzar a ayudarte ¡hoy mismo!

@DatlasMX

Un plan para iniciar en E-commerce en tiempos de cuarentena (E-commerce, Podcasts, entre otros) – Datlas Research

Otra semana más de cuarentena, pensamos que podemos demorar un mes en que todo el tema de distanciamiento social nos juegue. O dos, o tres. Mientras tanto las reglas del libre mercado y oferta-demanda comienzan a cobrar más fuerza. Los denominados “brick – mortars” y las marcas de modas han quedado perplejas ante el efecto dominó de la pandemia en sus estados financieros. Primero las contracciones en las bolsas de valores, luego las empresas, los empleos y finalmente las carteras y el abasto familiar de las personas. Pero ¿Esta es la realidad de todas las industrias? ¿Hay excepciones? ¿Habrá un canal más adecuado?

Datlas_barra_suscribir

En la nueva economía que nos espera probablemente se cumplan los principios de “Darwin”, nos referimos a la selección natural. Si vinculamos esta lógica al efecto de la pandemia en la economía podemos poner atención en la importancia que están tomando los canales digitales, la cantidad de emprendedores y empresas que hoy, con urgencia, quieren sumarse a un canal digital y los cambios de hábito en el nuevo consumidor.

Datlas_QueApuro_TransformacionDigital
¿Quién lideró la transformación digital en tu compañía?                                             A) Director(a) General ; B) Director(a) de Tecnologías; C) COVID-19

En esta columna  hablaremos sobre cómo los canales digitales, particularmente en “e-commerce” se han destacado entre otros canales de venta por la casi carente necesidad de interacción social en sus transacciones. Daremos algunas ideas para tomarte más enserio los negocios en línea y cómo el análisis de datos te puede ayudar a llegar a las metas de forma más rápida.

Destacados

A continuación, inspirados en el reporte de Stackline que contrasta la variación de categorías transaccionadas por canales “e-commerce” de Marzo 2020 contra Marzo 2019 presentamos algunos resultados interesantes.

A continuación el nombre de la categoría acompañada de la cifra de variación en %.

Top 20 de categorías con más crecimientos durante COVID-19

  1. Guantes desechables +670%
  2. Máquinas de Pan +652%
  3. Medicionas para la tos o resfríado +535%
  4. Sopas +397%
  5. Granos y arroz seco +386%
  6. Comida empacada +377%
  7. Copas de frutas +326%
  8. Equipo para entrenamiento (pesas) +307%
  9. Leche y crema +279%
  10. Insumos de limpieza para trastes +275%
  11. Toallas de papel +264%
  12. Jabón de manos y sanitizador + 262%
  13. Pasta +249%
  14. Vegetales +238%
  15. Harina +238%
  16. Toallas faciales +235%
  17. Medicina para alergias +232%
  18. Salud para la mujer +215%
  19. Cereal +214%
  20. Generadores de poder +210%

Top 20 de categorías con mayor caída durante COVID19

  1. Maletas y equipaje -77%
  2. Maletines -77%
  3. Cámaras -64%
  4. Trajes de baño para hombres -64%
  5. Ropa de novia -63%
  6. Ropa formal de hombres -62%
  7. Trajes de baño para mujeres -59%
  8. Playeras de neopreno para agua -59%
  9. Zapatos atléticos para hombre -59%
  10. Bolsas de gimnasio -57%
  11. Mochilas -56%
  12. Equipo de buceo -56%
  13. Trajes de baño para niñas -55%
  14. Equipamiento para béisbol -55%
  15. Artículos para fiestas y reuniones -55%
  16. Equipo de protección para motociclismo -55%
  17. Bolsas para cámaras -54%
  18. Vestidos y trajes para dama -53%
  19. Botas para mujer -51%
  20. Bastidores de carga para autos -51%

Más ejemplos del reporte completo de Stackline:

El pase de diapositivas requiere JavaScript.

Atributos importantes

No sólo se trata de arrancar una tienda porque conozco a X o Y persona que me puede proveer a buen precio cierto producto. Al menos hay que dedicarle un par de días a la ideación y sobre todo a las selecciones técnicas.

¿Me conviene más subirme a un canal existente o crear el mío?

La respuesta es depende. Si tienes una marca con reconocimiento local o nacional vale la pena hacer tu propia apuesta. Una marca de juguetes muy conocida en Estados Unidos “Toys R Us” tomó la decisión de depender de Amazon como su canal principal digital. Durante un tiempo tenían ciertas primicias y exclusividades para algunas categorías. Conforme Amazon subió su dominio en la arena comercial, tanto físico y digital, fueron integrando competidores y proveedores directos de juguetes. De pronto Toys R Us cayó en ventas en canales digitales y hace un par de meses quebró. Hay que tomar en cuenta que una marca puede diversificar su presencia digital, por lo tanto tendrá que planear qué reglas define en canales físicos, en canales digitales y en canales de terceros.

El pase de diapositivas requiere JavaScript.

Por otro lado si eres un nuevo entrante es recomendable sumarte a canales como Mercado Libre, Amazon, Ebay, Linio, entre otros que podrán educarte un poco en la dinámica del negocio en línea, conectarte con pasarelas de pagos importantes así como protegerte de los contracargos.

¿Cuál plataforma es la indicada para iniciar si quiero hacerlo por mi cuenta?

El pase de diapositivas requiere JavaScript.

Hay que entender que hay distintos roles en el e-commerce. Hay jugadores que solamente juegan en la arena digital. Algunos híbridos, es decir, lo que catalogues en lo digital tiene potencial de que termine en un anaquel físico. Otros preparados para exportar, otro responsables de la logística e inventarios. En toda esta mezcla la recomendación sería atender los puntos de la venta que más están en tu control y con base a esto escoger la plataforma.

  • Adquirir insumos o productos a bajo precio (En tu control)
  • Importarlos o prepararlos para revender (Usa terceros)
  • Preciar, catalogar y promocionar en canales digitales (En tu control)
  • Entregas y logística (Usa terceros)
  • Atención al cliente (En tu control)
  • Reseñas y calificaciones (Usa terceros)
  • Devoluciones (Usa terceros)
  • Pasarelas de pagos y protección de contracargos (Usa terceros)

Con una ecuación como esta podrías tener el potencial de vender productos marginando cerca de 50%-60% dependiendo la capacidad de descuento por volumen que obtengas. Si te gusta esta propuesta de valor te resultará interesante explorar plataformas como: Ecwid, Shopify y/o Magento.

Datlas_barra_suscribir

Y la analítica ¿Dónde? ¿Cuándo?

Una tienda física tiene más de 14 puntos de recolección de datos. Estos postulados los hacemos en nuestras conferencias tratando de sensibilizar a las y los dueños de negocios acerca de como pueden capitalizar datos. En el mundo virtual hay una infinidad de puntos dependiendo las herramientas que utilices. Algunos journeys son:

  • Análisis de datos para seleccionar las categorías que conviene vender. Te recomendamos revisar la página https://camelcamelcamel.com/
  • Análisis de facebook ads y promocionales en tus publicaciones para ver qué segmento de audiencia tiene más enganche con tus post
  • Google analytics cuando nuestro cliente visita la página web podemos conocer su demografía, gustos, preferencias, comportamiento en el sitio web y desarrollar mejoras
  • En el catálogo de los productos que ofreces, podrías monitorear en tu plataforma como shopify o ecwid qué precios son los que mejor tracción tienen en tus productos
  • En el momento de entrega ¿Qué proveedor de logística tarda menos? ¿Cuál te cobra menos?
  • Entre otros…

Te invitamos a conocer nuestro caso de análisis de e-commerce en este vínculo:

Reflexión final

Durante el resto del año, tal como lo hemos comentado en nuestros webinars, continuará siendo una temporada dura en el sentido económico. Hay que continuar buscando nuevas tácticas para mantener a flote nuestros negocios y nuevas líneas de ingreso. El e-commerce es una buena opción, tomará un tiempo en aprender, pero una vez dominado sin lugar a duda será una habilidad digital que te servirá toda la vida.

Por nuestra parte, desde Datlas, recuerda que estamos aqui para aportarle ese granito de arena con la analítica para que tus operaciones sean eficientes, detectes y reacciones rápidamente a nuevas líneas de ingreso y no pierdas dinero en el intento.

Hasta aqui la columna de hoy, te invitamos a escuchar nuestro podcast “Café de datos” para continuar aprendiendo de analítica. Recuerda compartir y difundir este blog con tus colegas que seguramente han tenido ganas de abrir una tienda, pero no se han atrevido.

Equipo Datlas

-Keep it weird –

 

 

 

 

¿Cómo analizar a la competencia usando mapas? – Datlas Casos de Uso

Una de las claves del éxito de los negocios es la ubicación, como ya hemos hablado, pero para ubicar un negocio hay ciertos aspectos que la mayoría de las empresas, sin importar su giro o sector, toman en cuenta para realizar un análisis y seleccionar el mejor punto. Algunas de estas variables son:

  1. El producto/servicio que a vender (giro/sector)
  2. Competencia (directa, indirecta, sustitutos etc.)
  3. Mercado meta ideal (perfil del consumidor)
  4. Características de la ubicación y el entorno (historia, estructura, demografía, tráfico, accesibilidad, estacionamiento, etc.)
  5. Negocios en la zona (complementadores, etc.)
  6. Aspectos legales (uso de suelo, reglamentación, lineamientos, etc.)
  7. Aspectos financieros (costos, gastos, mantenimientos, etc.)

free_Suscriber

Sin duda algunos de estos puntos, en un inicio, los define el emprendedor/empresario como, por ejemplo: el mercado meta ideal o perfil del consumidor. Mientras que otros provienen de un análisis de mercado y entorno respecto a la ubicación analizada. En esta entrada nos vamos a enfocar en el análisis de competencia a través de nuestras plataformas de Mapas.

Para ello vamos a utilizar el caso de Andrea, una joven emprendedora con un concepto de gimnasio que mezclaba la parte tradicional de las maquinas y las pesas con toda esta tendencia del baile y las nuevas metodologías fitness. Andrea estaba por abrir su segunda sucursal en Nuevo León. Reconociendo que este mercado estaba teniendo un auge y que los competidores nacían de forma rápida y con facilidad, decidió enfocarse en analizar a la competencia alrededor de esta nueva oportunidad de ubicación. Así que ¿Cómo lo hizo?

En primer lugar Andrea entró al Marketplace de Datlas y adquirió su Mapa Premium para Nuevo León.

Quédate hasta el final y descubre el código de descuento para adquirir hoy mismo tu Mapa Premium para cualquiera de las geografías disponibles

datlas_mx_marketplace_mapa_premium

Una vez adquirido su mapa, entró directamente en la página web de Datlas (www.datlas.mx) y se autentificó como usuaria.

El pase de diapositivas requiere JavaScript.

Una vez dentro de su panel personalizado, se fue a la sección de Mapas y selecciono su Mapa Premium para Nuevo León.

datlas_mx_panel_personalizado

Una vez dentro del mapa, utilizo la barra de búsqueda por dirección para localizar la ubicación que estaba evaluando.

El pase de diapositivas requiere JavaScript.

En cuanto localizó la ubicación, Andrea hizo uso de una herramienta llamada “Consulta Establecimiento” que se encuentra justo en la cuarta posición de la barra lateral derecha, debajo de la herramienta de búsqueda específica y justo arriba de la herramienta de medición de distancia.

free_Suscriber

Haciendo uso de esta herramienta Andrea, y todos nuestros usuarios, pueden escribir una palabra clave, en este caso, por ejemplo: gimnasio y el sistema realiza una búsqueda de esa palabra clave en las bases de datos de negocios para obtener como resultado todos aquellos establecimientos que tengan esta palabra dentro de su nombre comercial y/o de su razón social.

En este caso, Andrea al poner gimnasio, obtuvo estos resultados:

El pase de diapositivas requiere JavaScript.

De igual forma, se pueden hacer consultas con palabras claves parecidas como, en este caso, “gym” y obtener también resultados:

datlas_mx_mapa_premium_nl_consulta_gym

De esta forma, Andrea pudo observar rápidamente el nivel de competencia que existía en el entorno y combinar las distintas herramientas de las que hemos estado hablando en entradas anteriores para complementar su análisis con una segmentación y prospección de cliente.

Finalmente, no olvides que tu también puedes empezar a analizar a tu competencia hoy mismo adquiriendo tu Mapa Premium para cualquiera de nuestras geografías disponibles, aprovecha el cupón BLOG50 para obtener un 50% de descuento (válido por tiempo limitado).

¡Visita nuestro Martketplace y aprovecha esta gran promoción!

 

También te invitamos a contarnos ¿qué reto enfrenta tu negocio actualmente? para poder sugerirte y escribir algunas formas de solución con nuestras plataformas. Escríbenos a ventas@datlas.mx o en nuestras redes sociales.

@DatlasMX

 

 

Amazon Go – La tienda sin carrito de compras, cajeros, filas o … ¿robos?

No, no es un nuevo episodio de la serie Black Mirror, ni día de los inocentes o una idea loca que podría llevarse a cabo en unos años.

Amazon lo ha hecho de nuevo, pues ha logrado revolucionar no sólo la experiencia de comprar en línea, sino también la de comprar en supermercados; pues ésta tienda es una realidad y se ubica en Seattle.

Datlas_barra_suscribir

Como hemos mencionado anteriormente, esta década será de la Inteligencia Artificial, pues Amazon demostró que por medio de visión computacional y técnicas de aprendizaje automático como Deep Learning, lograron revolucionar la experiencia de compra.

Básicamente entrenaron un algoritmo para que reconozca cada producto que tienen en inventario y pueda diferenciar uno de otro… algo similar a este capítulo de la serie “Sillicon Valley”:

Pero, al tener la tienda repleta de cámaras son capaces de cubrir el establecimiento en toda dirección pudiendo detectar cuando una persona toma o deja un producto.

Les dejamos el video para que lo vean por ustedes mismos.

¿Increíble no?

Las ventajas van más allá de no perder tiempo haciendo fila, pues ellos mencionan que el cliente será capaz de tener mayor privacidad al realizar sus compras, ya que no habrá un cajero al que le tenga que mostrar sus compras.

Por si se lo preguntan aún cuentan con empleados, hay gente que ayuda al cliente a encontrar algún producto en específico, la que prepara los alimentos frescos e incluso alguien que valida que los clientes que llevan alcohol sean mayores de edad.

Sin embargo, aún no es perfecto, pues algunos clientes reportaron que hubo productos que no se les cobraron.

Pero, ¿es el primer caso de una tienda de este tipo?

En realidad no; pues, como suele pasar, los asiáticos se les adelantaron.

En China existe una empresa llamada BingoBox con 28 sucursales móviles operando, donde se pueden adquirir snacks, frutas, bebidas y medicina sin un solo empleado.

Aunque la experiencia es algo diferente; pues en este caso sí hay una especie de caja donde el cliente hace un self-checkout y al final un sistema de reconocimiento valida que los productos que el cliente se lleve son únicamente los que adquirió.

Datlas_barra_suscribir

Parece que esto es también una limitación, pues todos los productos tendrán que ser visibles al momento de salir, es decir, la cantidad de productos tendría que ser pequeña para que pueda sostenerlas.

Aunque tienen sus diferencias, utilizan técnicas muy similares para que la tienda no requiera muchos empleados, pues en este último caso la empresa dice que 4 empleados se encargan de administrar 40 tiendas.

Les dejamos el video de igual manera.

Una limitación de ambas parece ser que no puede haber muchas personas comprando a la vez.

¿Qué opinas?

¡Déjanos tus comentarios!