Archivo de la etiqueta: analitica de datos

El Lanzamiento de Datlas Academy está casi listo – STARTUP DATLAS

Las startups-scaleups no podemos estar orientadas a un sólo productos y/o servicios. No ensamblas un equipo de emprendedores cargados de innovación y experimentación para solamente hacer “una cosa”. Si bien este argumento es muy debatible, la nueva ola de startups está pensando en orientar sus inversiones y tiempos al desarrollo de ecosistemas.

En este Norte y a la luz de la integración de un ecosistema de analítica y transformación digital en esta columna detallaremos los primeros pasos que estamos haciendo en Datlas para la formación de un ecosistema que lleva ya en piloto 6 meses operando de manera muy exitosa.

¿Qué significa pensar en ecosistemas?

Les contaré una historia. Hace tiempo comencé a correr y me pareció bastante más estimulante hacerlo mientras escuchaba música y/o podcast. En ese sentido me suscribí a #spotify para conectarme a contenido de muy buena calidad. Sin embargo al momento mis audífonos inalámbricos ya estaban obsoletos y fallaban. Fue entonces cuando busqué opciones y , a pesar de ser usuario Android, di con los Airpods de la marca APPLE.

Habitualmente, si eres un usuario de IPHONE, serían tu primera opción. Si eras como yo, de ANDROID, ni lo pensarías. Pero tras un par de sesiones de ejercicio quedé fascinado con su tecnología “noise-cancelling”, portabilidad y diseño. En 28 años no había adquirido ningún equipo de la marca de la manzana hasta ese momento.

Me encontré después en la necesidad de adquirir un nuevo equipo smartphone de trabajo y bajo una lógica similar adquirí un Iphone. Era genial la sincronización y la facilidad de uso de los audífonos. Mi experiencia con la marca de la manzana parecía que mejoraba por cada artículo de su ecosistema que obtenía.

Finalmente, quise agregar y regalarme de cumpleaños un reloj inteligente de la misma marca. Y lo que les puedo contar es que la experiencia de los 3 aparatos mejoro considerablemente.

¿A dónde quiero ir con todo esto? Aunque sea un ejemplo a veces trillado, APPLE ha generado líneas de ingreso alrededor de formar un ecosistema en donde cada nuevo lanzamiento representa un valor agregado a la experiencia global de marca ¿Será posible trabajar en algo similar cuándo hablamos de una startup de analytics cómo Datlas?

¿Cuál es el ecosistema de Datlas?

En realidad en Datlas entendimos que muchas organizaciones están encima de la ola de la “transformación digital ” y esto no sólo ocurre adquiriendo nuevas tecnologías y/o plataformas de analítica. En realidad la base de la transformación es el capital humano y durante los últimos 5 años hemos recibido invitaciones a impartir conferencias, cátedras y webinars con nuestros clientes para impulsar a mayor nivel la conversación de digitalización en los equipos internos.

Con esta misma motivación y para regresarle un poco a las comunidades que nos han visto crecer decidimos continuar impulsando este “Blog Datlas” y nuestro podcast “Café de Datos”. En donde hemos atraído audiencias de cientos de miles de personas que están pivoteando algunos aspectos de su carrera hacia la analítica y transformación digital.

En este sentido, iniciamos este año en etapa ALFA www.datlasacademy.com un experimento de plataforma en línea con mucho del contenido exclusivo que hemos desarrollado. De la mano con esto “pitcheamos” a algunos aliados la idea, confiaron en nosotros y decimos tomárnoslo más en serio.

Lanzamiento de Datlas Academy

Datlas Academy es una comunidad de aprendizaje habilitada por una plataforma digital de educación para capacitar jóvenes y ejecutivos que buscan actualizarse en conocimientos prácticos de transformación digital y tecnologías vigentes en LATAM de alto valor agregado

•Es una plataforma donde expertos pueden preparar y desarrollar cursos en línea para monetizar su conocimiento

•Es una plataforma donde expertos pueden preparar y desarrollar cursos en línea para monetizar su conocimiento

•Con programas en español preparados de manera didáctica y con talleres que presentan ejemplos de uso de herramientas

•Para instituciones y organizaciones el contenido puede darle más valor a su membresía

Una comunidad con 3 tipos de usuarios

1) Maestros

2) Alumnos

3) Instituciones

Alianzas con organizaciones e instituciones para enfocar aprendizaje de transformación digital y analítica en su gestión del cambio organizacional.

Te invitamos a suscribirte dentro del mes de Septiembre para ser de las y los primeros con acceso a esta plataforma. Obtendrás de manera gratuita 3 cursos de bienvenida: 1) Storytelling de Datos ; 2) Introducción a la Ciencia de Datos y 3) Definición de KPIs para tu organización. Regístrate en www.datlasacademy.com

Hasta aqui la columna de hoy. Síguenos en redes @DatlasMX para conocer más de nuestros lanzamientos del 2021.

Nota especial: Agradecemos infinitamente a las marcas, aliados y a nuestro equipo de desarrollo en Datlas que han potencializado este lanzamiento para que salga en tiempo y forma.

Equipo Datlas

– Keep it weird –

Utilities: abundancia de datos y gran oportunidad para analítica y big data – Investigación DATLAS

Hace alrededor de un mes tuvimos la oportunidad de tener como invitado en nuestro podcast Café de Datos al Global Head of AI & Analytics en Telefónica IoT & Big Data Tech el gran Antonio Pita Lozano con quien estuvimos platicando acerca de la ciencia de datos como una carrera profesional, como ensamblar equipos de ciencia de datos en las organizaciones e incluso nos comentó acerca del Máster en Ciencia de Datos del cual es director en KSchool. En esta columna vamos a tomar una de las aportaciones que más nos sorprendió de la charla con Antonio para profundizar un poco más.

Para iniciar, como es costumbre con nuestros invitados en el podcast, les pedimos que nos compartan ¿con quién se tomarían un café? si pudieran elegir a cualquier personaje de la historia. En este caso Antonio nos comentó un par de nombres famosos, pero terminó inclinándose por Alan Turing. Para quien no lo conozca Alan Turing fue un matemático nacido en Reino Unido que fue un protagonista del desarrollo del campo de la teoría computacional. Recientemente se hizo más famoso por su función de criptógrafo descifrando mensajes de los “nazis” con la máquina ENIGMA después de la segunda guerra mundial. De hecho en Datlas le hicimos un homenaje a este gran personaje por el Día de Muertos que celebramos en México, puedes ver el altar homenaje aquí.

Después de este pequeño ritual de bienvenida para calentar motores Antonio nos relató un poco de su carrera y desarrollo profesional. Durante este bloque comentamos acerca de la transformación digital que han experimentado, y aprovechado, algunos grandes sectores económicos como lo es la industria financiera. Asimismo le pedimos a Antonio que nos diera su perspectiva alrededor de sectores o industrias que tuvieran grandes cantidades de datos y al mismo tiempo una gran oportunidad de aprovecharlos o explotarlos de una mejor manera. Sorprendentemente para nosotros, Antonio nos hizo notar que uno de los sectores que ha tenido una inmersión importante en temas de analítica de datos, después del sector financiero, ha sido el sector de las Utilities y quisimos profundizar un poco en esta parte.

¿Qué son las Utilities?

Las utilities es la denominación en inglés de aquellas compañías que pertenecen al sector energético y de servicios colectivos que prestan servicios de los cuales no se puede prescindir como por ejemplo: electricidad, gas, agua, residuos, etc.

Se consideran empresas seguras puesto que los ingresos son estables, sin embargo, debido a la gran inversión que requieren, suelen tener grandes cantidades de deuda, provocando una gran sensibilidad ante los cambios en la tasa de interés. Un aumento de la tasa de interés, va acompañado del incremento de la deuda, lo que provoca que el funcionamiento de las Utilities sea mejor cuando las tasas de interés están decayendo o se mantienen bajas.

¿Cómo aprovechan el Big Data y la analítica de datos las Utilities?

Antes que nada hay que entender que estas empresas apalancan otra de las grandes tendencias de la transformación digital que es el Internet de las Cosas (IoT) y los sensores.

Growing Technology Acceptance Boosts Demand for IoT in Utilities

Esta nueva forma de obtener datos les permite generar casos de uso como:

Predicción, detección y prevención de cortes de energía

Un corte de energía puede hacer que todo un país se detenga, como el apagón del noreste de 2013 que afectó a más de 45 millones de personas en los Estados Unidos. Las condiciones climáticas desfavorables son una de las principales causas de tales cortes. Las Utilities están construyendo una infraestructura y sensores más inteligentes para mejorar la previsibilidad y prevenir estos escenarios de interrupciones.

Los sistemas modernos de cortes de energía emplean soluciones en tiempo real que operan en base a datos en vivo y algoritmos inteligentes para predecir y prevenir cualquier situación posible.

Estos sistemas son capaces de predecir el impacto de cualquier eventualidad cercana a la red, posibles cortes causados ​​debido a eventos de medidores inteligentes, cortes específicos de la región y más.

Gestión de carga inteligente

Para gestionar de forma eficiente la carga de energía, las Utilities necesitan equilibrar de forma estratégica e inteligente la demanda de energía con un suministro de energía óptimo en un período de tiempo determinado. Tener un sistema de gestión de carga inteligente les permite cubrir los requisitos de gestión de red de extremo a extremo, incluidas la demanda y las fuentes de energía con la ayuda de fuentes de energía distribuidas, sistemas de control avanzados y dispositivos de uso final.

Todos los componentes del sistema de gestión generan datos. Al aplicar análisis de Big Data, las empresas pueden tomar decisiones con precisión con respecto a la planificación y generación de energía, la carga de energía y la estimación del rendimiento.

▷ Mantenimiento Predictivo - Digitalización y optimización de las fábricas

Gestión preventiva de activos

Dado que es una industria intensiva en activos y depende en gran medida del rendimiento óptimo de sus equipos e infraestructura de red. La falla de estos activos puede causar serios problemas de distribución de energía y, en consecuencia, mermar la confianza del consumidor. Por lo tanto, prevenir este tipo de incidentes es una de las principales prioridades de la industria.

Para el mantenimiento preventivo de equipos, el Big Data y la analítica viene al rescate. Los activos están integrados con sensores inteligentes, rastreadores y soluciones de datos que transmiten información en tiempo real al centro. Los datos recopilados se pueden procesar y analizar para identificar posibles problemas con el mantenimiento del equipo, lo que permite un manejo proactivo de la situación.

Mayor eficiencia operativa

Aprovechar los datos en tiempo real de los activos relacionados con la tasa de actividad, el estado de las operaciones, el tiempo, el análisis de la oferta y la demanda, y más, ayudan a las empresas de Utilities a optimizar la eficiencia energética y el rendimiento de los activos. Las aplicaciones de Big Data y analítica les permiten mejorar la confiabilidad, la capacidad y la disponibilidad de sus activos de red mediante el monitoreo continuo del costo y el rendimiento.

Y… ¿de que tamaño es el mercado?

Finalmente, Antonio nos hizo reflexionar acerca de las aplicaciones de Big Data, analítica de datos, Internet de las Cosas y sensores que tiene este sector. Hemos visto ejemplos claros y aplicaciones con casos de negocios sustentados, pero como emprendedores, como proveedores de soluciones de analítica, la última disyuntiva que pudiéramos tener es ¿de qué tamaño es el pastel? y justo nos dimos cuenta que la inversión en analítica por parte de las Utilities ha venido creciendo desde el 2012 y el año pasado logró posicionarse en $3.8 billones de dólares, de los cuales Latinoamérica participa con alrededor de $0.5 billones de dólares.

Así que, al igual que nosotros esperamos que hayas aprendido como nosotros un poco más alrededor de una industria que a pesar de ser longeva tiene una gran oportunidad y ya esta adoptando nuevas tecnologías.

Si eres emprendedor, profesionista o simplemente te interesa adentrarte al mundo de la ciencia de datos te recomendamos escuchar el Episodio #44 de nuestro podcast Café de Datos con Antonio Pita y conocer más acerca del Máster en Ciencia de Datos de KSchool del cual Antonio es el director y tiene un modelo muy interesante de aprendizaje basado no solo en la teoría sino también en la práctica.

Hasta aquí la columna de hoy, no olvides compartirla con tus colegas y seguirnos en nuestras redes sociales como @DatlasMX

Bibliografía:

BigDataissuesandopportunitiesforelectricutilities.pdf

The role of big data analytics in Energy & Utilities (cigniti.com)

Utility | WikiFinanzas – Finanzas para Mortales (wiki-finanzas.com)

El futuro de la seguridad PARA SMART CITIES (FT. ANALITICA DE DATOS) ¿problemas de privacidad? –

Recientemente podrás haber leído nuestra columna de “CODED BIAS” , el documental de Netflix donde se hace referencia a la inteligencia artificial como potencial causante de un futuro donde las decisiones tomadas por máquinas llevan una carga de sesgo humano. Esta carga es la que genera categorizaciones equivocadas cómo no identificar a personas de razas no blancas, detener personas en la calle por malas interpretaciones, entre otras.

En este episodio daremos un paso adelante y profundizaremos en cómo tecnologías y analítica de datos se combinan para dar pasos avanzados en el tema de seguridad. También reflexionaremos sobre si esto generaría problemas para la privacidad de las personas.

Para entrar motivados a esta columna comenzaremos dando una idea de qué tipo de tecnologías ensamblan a una de las cadenas más famosas de comida rápida.

¿Qué lograron? Apps para pedir bajo demanda, segmentación de visitantes, escaneo de placas, recomendaciones sugeridas, personalización de órdenes en pantallas, auto-servicio para dudas y comentarios y sobre todo hiper-personalización.

Si ellos lo lograron para vender más hamburguesas… ¿Una ciudad lo podrá hacer para cuidar a sus personas?

¿Qué aplicaciones de analítica de datos son usadas al día de hoy para seguridad de la ciudadanía?

1) Identificación de personas por cámaras de seguridad

Las cámaras de CCTV son implementaciones cada ves más frecuentes por delegaciones y municipalidades para monitorear la seguridad en la ciudad. De hecho, puedes ver nuestro blog de “Análisis de cámaras CCTV en el mundo”. donde ciudades como Monterrey acumularon 4.18 cámaras por kilómetro cuadrado (4,000 cámaras) para el 2020. Pero por otro lado, ciudades como Londres tienen 67.5 CCTVs por km2 o Taiuyan China 120 cámaras por km2.

2) Detección de personas contrastando inventarios de imágenes

Además de que las cámaras detecten personas, las CCTVs de más alta definición tienen potencial de hasta 50x de zoom óptico, además de otro tanto digital. Con esto se pueden obtener resoluciones completas de personas. Si estas imágenes se contrastan contra bases de datos de imágenes ciudadanos, por ejemplo en México, de las credenciales de elector para votar o licencias de conducir, es posible deducir quién es la persona que se mueve en la ciudad y dónde gracias a la ubicación de las cámaras.

3) Identificación de autos mediante placas

Una de las más sofisticadas es la detección de placas de autos. Se instalan estos detectores en entradas, accesos, casetas y también en las vías más importantes de la ciudad para detectar las rutas que toman autos.

Imagínense en una persecución, sería sencillo identificar un auto si tenemos sus placas considerando que en una base de datos sabemos donde y en qué momento se han estado movilizando autos con esas placas.

Si quisieras entender cómo funcionan estos algoritmos de clasificación te recomiendo revisar este blog de supervisados vs no supervisados.

4) Etiqueteo de objetos en toma para generar filtros

Hay “ejércitos” de personas y compañías que hoy día se dedican a etiquetar objetos en vídeos y fotografías para poder entrenar filtros en CCTV. De manera en que si quiero detectar autos blancos en el video puedan ser eliminados todos los autos que no sean de ese color. Así como las motocicletas y facilitar las persecuciones de los oficiales.

5) El principio de una ciudad inteligente: Centros de monitoreo

C4 Municipal, C5 Estatales y mecanismos de monitoreo en las ciudades. El principio de ciudades inteligentes es capacitar equipos que puedan monitorear y convertir todos estos datos en protocolos de seguridad. Así como de prevención.

También te puede interesar nuestro podcast donde hablamos de cómo analizar datos para proteger tu negocio.

6) Análisis de reportes vía redes sociales y reportes de ciudadanía

En Monterrey, Nuevo León, México plataformas ciudadanas como CIC han dado de alta la plataforma de CIVIX – Análisis (Liga: https://analisis.civix.mx/ ) en dónde se pueden visualizar y dar seguimiento a denuncias ciudadanas.

¿Y hay preocupaciones por la privacidad ?

La conversación, desde el documental de social dilemma, ha sido más democratizada. Somos más conscientes de que los datos asociados a personas y las problemática de la privacidad de los datos. Antes teníamos que llenar formularios de datos para que se escribieran en una base de datos, ahora con nuestro rostro hay mucha información que pueden saber de nosotros.

En el futuro habrá más conversaciones de ética. Lo importante es saber que estamos en ese punto en el tiempo en el que debemos de identificar que es lo que está pasando y/o está a punto de suceder en muchas ciudades del mundo. Por ejemplo, en México se ha avanzo en una legislación para generar un padrón de números telefónicos e información personal. Puedes ver esta nota de Forbes con todos los detalles. Pero los datos que solicitarán son:

Los datos que tendrían que dar los usuarios mexicanos son:

  • El número telefónico.
  • Fecha y hora de la activación de la linea telefónica móvil adquirida en la tarjeta SIM.
  • Identificador único de la tarjeta SIM.
  • Fecha y hora de activación de la línea telefónica.
  • Nombre completo, domicilio, nacionalidad y datos biométricos, como su huella digital del usuario.
  • Número de identificación oficial con fotografía del titular de la línea.
  • Esquema de contratación de la línea telefónica móvil.

¿Qué riesgos? Bueno un mal uso por parte de las autoridades, mal aprovechamiento de información, vulnerabilidades en información si algún hackear llega a identificarlos, entre otros

También te puede interesar “Fragilidad en sistemas IOT y de seguridad”. Fuente: https://www.elfinanciero.com.mx/tech/sin-protocolo-de-seguridad-empleados-de-verkada-tenian-amplio-acceso-a-camaras-de-clientes-privados/

Hasta aquí la columna de hoy. Hay que continuar manteniendo una postura de ciudadanos digitales y comenzar a preocuparnos por los derechos del mundo del internet y las privacidad de los datos.

– Equipo Datlas –

Keep it weird

¿Cómo identificar A un impostor de datos? – datlas emprendedores

Ya conoces de nuestras otras columnas que hemos hablado que además de los científicos de datos hay muchos otros roles en el campo de la analítica avanzada de datos. Puedes leerlo en “Los 5 perfiles en una estrategias de datos”. Quienes no redujeron presupuestos en pandemia han creado nuevos departamentos de analítica avanzada. Esto aplica para compañías de todo tipo de tamaño. Por lo mismo, la demanda de capital intelectual de ciencia de datos se ha incrementado y la oferta es insuficiente. Por esta razón, existen situaciones en las que personas con poca o insuficiente formación en el campo atienden proyectos de analítica. La falta de respaldo en el campo se empieza a traducir en altas rotaciones, pérdida de fe en retornos de inversión para proyectos de ciencia de datos y/o reducción de presupuestos. En esta columna compartiremos algunos consejos de cómo detectar a “impostores de datos” con algunas revisiones puntuales al momento de entrevistar personas.

1) Los charlatanes de datos se esconden en todo tipo de equipos y áreas. Se rodean de gente capaz, pero se camuflajean entre la estadística y los análisis de negocio

Es útil entender que analítica y estadística son dos tipos de campos de dominio distintos. En estadística se aprende a entender el valor más allá de los datos, sintetizando un entendimiento global de variables a partir de tendencia central, identificando problemas en una serie de tiempo, excepciones en variables categóricas y más que nada encontrando significancias. Un analista, por otro lado, está preparado para entender y dimensionar una base de datos con mayor conocimiento del campo de dominio del negocio. Generar a partir de relaciones conclusiones y mensajes de oportunidad para una empresa.

En la práctica, los roles de de ciencia de datos requiere la función híbrida. Un analista se quedaría corto si no conoce suficiente de estadística para validar pruebas de hipótesis. Y un conocedor de estadística requiere una visión global al momento de enfrentarse a un problema de datos. Cuidado de caer en la falacia de que estas funciones “duermen” por separado.

Te puede interesar leer “Por qué fracasan los proyectos de datos”

2) El arte de manejar la incertidumbre, los “outliers” (anomalías) y faltantes

Un buen analista es similar a un doctor al momento de iniciar un nuevo paciente. Lo primero es generar un diagnóstico, no importa cuántas personas hayan diagnosticado antes las bases de datos a trabajar, hay que realizarse una serie de preguntas sobre el problema de datos que se va a enfrentar. Alejarse de este diagnóstico es quedar fuera de un verdadero proyecto de ciencia de datos.

De hecho, puedes leer “Cómo construir un checklist para proyectos de analítica de datos”. Los impostores de datos muchas veces se enfocan más en entregar los resultados al jefe y olvidan la parte artesanal de curar los datos para tener la estructura de datos óptima para resolver un problema en especifico.

3) Más seducidos por el p-value significancia estadística que la significancia de los resultados para la estrategia del negocio

La obsesión por la técnica estadística no necesariamente está asociada a un buen desempeño como científico de datos. Tener talento académico y seguir los principios de estadística en un ejercicio de análisis de datos es importante. Pero debe haber una obsesión con generar resultados objetivos para el negocio.

Una vez que prioricemos ese objetivo, los verdaderos científicos de datos no se detendrán con su entendimiento estadístico. Querrán conocer e identificar el ADN del negocio.

4) El arte de generar variables para llegar conclusiones que hagan sentido

Un analista serio no comenzará su análisis con las variables que le entregaste para trabajar. Buscará explorar y desarrollar nuevas variables. Por ejemplo, cuando trabajas con latitudes y longitudes y quieres trabajar algún modelo como una regresión. Los campos no deben ser ingresados como tal ya que los modelos lo pueden interpretar como variable numérica y en realidad ni representan una dimensión. Debemos de generar un punto de referencia y la distancia hacia el mismo, como el los kilómetros del punto al centro de la ciudad, una escuela cercana, un hospital o algo similar. Para que nuestra conclusión de regresión pueda ser interpretada como “por cada cambio en X variable, existe un cambio en Y”. Por “cada kilómetro que más me alejo del centro de la ciudad, cae X nivel de ventas”. Es común en las pruebas aplicadas para científicos de datos poco preparados este tipo de carencias salgan a relucir.

Si quisieras saber algunos consejos de cómo deberías reclutar a tu equipo de analítica no te olvides leer “Diseño de perfiles y áreas de analítica en organizaciones”. o escuchar nuestro podcast “Café de Datos”.

5) Un charlatan de datos llega a conclusiones demasiado rápidas… a conveniencia

Un experimento de datos no se puede declarar exitoso si sólo se pone a prueba con una serie de datos. Un buen “Testing” es aquel que se experimenta en distintas condiciones, con datos que estuvieran vigentes en temporalidades distintas y , si es posible, estresado bajo modelos contrastantes.

Un charlatán de datos usará más de su tiempo en convencerte que el primer resultado fue el correcto o que su método es el único en lugar de buscar formas de contradecir el ejercicio inicial iterando con otros datos el modelo en cuestión.

6) La culpa es del modelo que fue tonto, no mía

La última, tiene más que ver con una actitud, pero un impostor de datos hará responsable “al modelo”. Hará referencia a que es de “caja negra” y que no es posible explicar el impacto de cada variable al resultado. Mucho cuidado con estos colaboradores de “falta de accountability”, porque además de mostrar poca capacidad de ajustar un modelo a una nueva realidad, muestran limitantes para poder explicar lo que hicieron y eso puede ser un peligro para la organización.

Comentarios finales

Recuerda que, como lo establecimos antes, “No necesitas un doctorado para aprender de data science, pero tampoco se aprende en una clase de 2 horas”. Los impostores de datos y análisis requieren precauciones y es importante continuar elevando el rigor de la materia. Te recomendamos buscar elevar los estándares en tu organización siguiendo estos consejos y leyendo alguna de las columnas que citamos

Equipo Datlas

– Keep it weird-

Fuentes y referencias originales

– Science of Fake. Fuente: https://www.lazerlab.net/publication/%E2%80%9C-science-fake-news%E2%80%9D

– How to spot a charlatan. Fuente: https://towardsdatascience.com/how-to-spot-a-data-charlatan-85785c991433

Aprendiendo de Ciencia de datos para líderes de equipo – manuales datlas

El mes pasado terminamos el curso de “Data Science for Managers”. Este curso tiene un alcance específico para gerentes que están liderando proyectos de analítica y transformación digital en organizaciones. En esta columna compartiremos 5 de los aprendizajes así como un podcast que grabamos alrededor de algunos conceptos de analítica y ciencia de datos que aprendimos.

Sobre los niveles de madurez en analítica para organizaciones

Cuando comienzas a hablar de ciencia de datos en organizaciones es muy importante darse un tiempo para la auto-evaluación. Entender cuál es el nivel de madurez de tu empresa o equipo te ayudará a seleccionar las estrategias adecuadas para ese nivel. En este caso el equipo que nos impartió las clases, Galvanize, nos recomendó este modelo de 5 niveles para medir el nivel de madurez de datos. Estos los identificamos y los discutimos en el podcast que te recomendamos escuchar.

** Te puede interesar aprender del “SISTEMA ILUO para desarrollar matrices de habilidades en departamentos de datos”

Sobre los lenguajes de programación para ciencia de datos más usados en la industria

En la industria sigue existiendo una variedad cada vez más crecientes de lenguajes de programación con enfoque a paqueterías que habilitan la resolución de problemas de analítica de datos. En general, de software libre Python y R fueron los más mencionados. Por otro lado los que consideran uso de licencia, sería SAS, MATLAB o SPSS. La extracción de información con SQL también fue mencionada. Todos estos apuntes para posible agenda de desarrollo de científicos de datos.

Sobre el pensamiento sistémico en analítica con transformación digital

Lo que continuará pasando al futuro es una mayor integración de hardware especializado que genere y comparta datos. En un pensamiento de proyectos sistémicos no se trata de ciencia de datos o inteligencia artificial por su cuenta sino de un pensamiento sobre sistemas inteligentes.

Este tipo de pensamiento nos ayudará a pensar cuando se contrate un proveedor en una organización si la plataforma que ofrece ¿Se integra con sistemas IOT? ¿Estaría contemplado para complementar un sistema inteligente?

Sobre la priorización

Otro de los beneficios de este curso fue que se lleva con otros expertos de la industria que convoca el Monterrey Digital Hub. Cuando los facilitadores generaron la consulta de cómo se priorizan los datos en las compañías hoy en día estas fueron las respuestas.

La respuesta de 6 de cada 10 asistentes fue que la visión de los ejecutivos (directivos) es lo que dicta la prioridad. Otros miembros complementaron con alternativas de presupuesto, impacto a indicadores clave o asignación de recursos por parte de la organización. Conforme la industria y los proyectos de datos se califiquen con más rigor muy seguramente la prioridad se generará más orientado a KPIs u OKR .

Sobre cómo medir el valor de los proyectos

Otro de los puntos a capitalizar, de lo que esperamos se pueda incrementar la cultura en las organizaciones, es de cómo medir de manera continua el ROI (retorno sobre la inversión) de los proyectos de analítica.

En el curso nos explicaron algunos de los factores como considera talento, productos de datos y tecnología necesarios para calcular el ROI. Y de manera muy importante detectar a qué oportunidad de negocio estamos impactando: Nuevas oportunidades, optimizar o automatizar.

Hubo muchos aprendizajes más, pero quisimos destacar algunos aqui y otros más en nuestro episodio de podcast de analytics “Café de Datos” #Cafededatos.

Hasta aqui la columna de hoy si te gustó la columna te invitamos a recomendar así como SUSCRIBIRTE a nuestro PODCAST Café de datos

Saludos

Equipos Datlas

– Keep it weird-