Archivo de la etiqueta: analítica de datos

Inteligencia Artificial y Big Data en los negocios, ¿Qué efectos tuvo el COVID-19 en estas tendencias? – DATLAS Investigación

A inicios de año se nos presentó un reto sin precedentes que afectó completamente la forma en la que hacemos negocios. En respuesta a este gran cambio muchas empresas hicieron un replanteamiento de estrategias y objetivos al final del primer semestre del año. Nosotros no fuimos la excepción, como proveedores nos tocó presenciar de primera mano como muchos negocios lidiaban en distintas maneras con este reto de la pandemia. Fue ahí, justo unos meses después del gran shock inicial que comenzamos a notar una revaloración que las empresas estaban haciendo respecto a sus datos, como un activo clave, y por ende acerca de tecnologías como la Inteligencia Artificial (I.A.) y el Big Data.

Datlas_Blog_Promo_SuscriberFree

Comprometidos con seguir aportando a nuestro ecosistema, y conscientes de lo que estábamos presenciando, organizamos un Programa de 6 Sesiones para este segundo semestre del año (una vez al mes) en donde exponemos con casos de negocios reales los beneficios que empresas de todos los tamaños han podido capitalizar el uso de datos y aprovechar estas tecnologías. Justo este viernes tendremos nuestra segunda sesión titulada “El impacto del Big Data y la Inteligencia Artificial en los negocios” y es por ello que, en esta columna, hablaremos de como estas tendencias han impactado el mundo de los negocios y que tanto la pandemia a “afectado” su adopción.

La relación del Big Data & la I.A.

Antes de profundizar es necesario dejar en claro la razón de hablar en conjunto acerca del Big Data y la Inteligencia Artificial. En un sentido general el Big Data se refiere a esta manipulación de grandes cantidades de datos o información en diversos formatos, mientras que la Inteligencia Artificial (I.A.) se refiere a programas computacionales que son capaces de emular actividades del cerebro humano como el aprendizaje con base a experiencia (eventos pasados). Siendo así, no podemos hablar de Inteligencia Artificial sin hablar de Big Data dado que para construir modelos o algoritmos de I.A. se necesitan datos, que precisamente son obtenidos y manipulados por el Big Data.

¿Qué impacto esperábamos hace algunos años?

Apenas hace un par de años (2018), según información de Deloitte, 9 de cada 10 ejecutivos afirmaban que los sistemas de I.A. transformarían sus modelos de negocio.

datlas_mx_blog_deloitte_encuesta

Además, se esperaba que la Inteligencia Artificial diera lugar a la aparición de nuevos perfiles profesionales que debían convivir con los ya existentes. Estos perfiles especializados abren un nuevo abanico de posibilidades innovadoras que afectan directamente a procesos y herramientas, que ven mejorado su rendimiento.

Impacto actual

Actualmente, lejos de verse mermado el acelerado crecimiento y adopción de soluciones de I.A., por ejemplo, se ha visto una expansión interesante a nivel mundial y también en Latinoamérica. En el caso de asistentes virtuales inteligentes (tipo Siri y Alexa) en Latinoamérica se manejan más de 850 millones de conversaciones en negocios B2B y B2C para atraer, generar, crecer y retener clientes. Y este es solo un tipo de aplicación y una de las múltiples formas de derivar beneficios.

Por otro lado, el Big Data se utiliza para promover productos, desarrollar mejores estrategias comerciales, llegar a los clientes, explorar nuevos mercados y audiencias objetivo, optimizar el flujo de trabajo, reducir los costos y obtener otras ventajas competitivas en el mercado.

Natural Language Processing: A Short Introduction To Get You Started |

Ahora bien, sabemos que no todos los negocios han sufrido esta pandemia de la misma forma. Existen sectores o industrias que han sido impactados de forma más crítica, mientras otros han podido lidiar con esto de una manera menos acelerada. De la misma forma el impacto que estas tendencias del Big Data y la I.A. han tenido en las distintas verticales de negocio ha sido variado, en términos de sus aplicaciones, pero igualmente relevante y trascendente. Por mencionar algunos ejemplos puntuales profundizaremos en industrias como: retail, marketing y publicidad, así como el transporte y logística.

Retail, Marketing y publicidad

La tarea más frecuente de las soluciones de Big Data está relacionada con la búsqueda de patrones de comportamiento que se puedan emplear para muchos propósitos. Comprender los hábitos y deseos de los clientes es la principal preocupación de cualquier negocio, y el análisis de Big Data es la única forma válida de lograr resultados precisos basados en un gran muestreo y cálculos extensos en lugar de intuiciones y experiencias personales.

Otra aplicación común de Big Data en las empresas de retail, marketing y publicidad es el análisis predictivo sobre la base de grandes conjuntos de datos. La mayor cantidad y volumen de datos permite obtener resultados más precisos, configurar más parámetros antes del análisis e incluso ampliar los temas y las posibilidades generales de pronóstico.

Qué es el Big Data Marketing y qué ventajas ofrece?

Transporte y logística

Las empresas de transporte también manejan grandes volúmenes de información sobre vehículos, pasajeros, equipaje y carga. La necesidad de administrar flujos de datos extensos con restricciones de tiempo estrictas impuestas por los horarios de transporte requiere soluciones de software de alto rendimiento diseñadas específicamente para Big Data.

El propósito práctico de tales soluciones radica en rastrear la entrega de carga, monitorear el uso y suministro de combustible, el estado técnico del estacionamiento de vehículos de la empresa, los controles de salud de los conductores y el horario de trabajo, así como muchos otros factores relevantes. De esta forma, las empresas pueden utilizar el software Big Data para priorizar la seguridad además de la optimización habitual del consumo de recursos y la mejora de la eficacia.

How does Big Data save logistics? - How does Big Data save logistics? -  Régens

¿Cómo pinta el futuro?

Los analistas empresariales predicen que los ingresos del mercado global de Big Data alcanzarán los 103 mil millones de dólares en 2027. No importa si tu empresa es grande o pequeña, siempre hay una forma de beneficiarse de las soluciones de Big Data. La ventaja más importante que ofrece esta tecnología es el conocimiento de las necesidades y los patrones de comportamiento de los clientes. Esta información, junto con los pronósticos de alta precisión permite a los empresarios diseñar estrategias comerciales efectivas en lugar de perder tiempo y dinero en el método de prueba y error. La capacidad de manejar grandes volúmenes de información utilizando soluciones de software automatizadas también simplifica enormemente la gestión empresarial, incluidos aspectos como mantenimiento, inventario, envío, carga de trabajo y otros.

Si quieres conocer un caso real aplicado de Big Data e Inteligencia Artificial y enterarte de como puedes tu mismo comenzar a aplicar estas tecnologías en tu negocio el próximo lunes, no te pierdas nuestra sesión este viernes. Inscríbete gratis aquí.

datlas_mx_6_sesiones_2S2020_bigdata_analytics_ia_sesion2_promo

Restaurantes en tiempos de rentas altas $ ¿Qué es una Dark Kitchen y cuáles son sus factores de éxito? – Datlas Investigación

Cuándo pensamos en inversiones de largo plazo muchos libros de hace 20 años van a sugerir las bienes raíces. Pero es una realidad que “los tiempos de los terrenos baratos” terminaron y la burbuja inmobiliaria es uno de los negocios que más se ha inflado por inflaciones ficticias y por una sobredemanda de espacios físicos.

En su contraparte, quienes tienen que rentar un local en una plaza comercial, habilitar servicios, instalaciones, estacionamiento, contratar personal, capacitar, comprar insumos, promocionar y atender de manera exitosa a sus clientes tienen retos operativos y financieros para sacar sus modelos de negocio adelante ¿Hay alguna manera de sacarle la vuelta o reducir la inversión de entrada? 

Datlas_Blog_Promo_SuscriberFree

En esta columna nos enfocaremos en el sector restaurantero y en cómo un concepto nacido en Inglaterra en respuesta a las altas rentas ha sido adaptado en México en tiempos de COVID-19. Hablamos de las dark kitchens o cocinas fantasmas. Y llegó para quedarse. Así cómo qué factores podría integrar una herramienta de inteligencia de datos y analítica para este subsector restaurantero.

***Te puede interesar: 13 TÁCTICAS DE RESPUESTA PARA RESTAURANTES Y SECTOR TURISMO EN ÉPOCA DE COVID19 – DATLAS RESEARCH

DatlaS_darkkitchen_cocinafantasma6

¿Qué es una dark kitchen o cocina fantasma?

Es un modelo de negocios gastronómico en tendencia que se enfoca en atender pedidos únicamente a través de reparto a domicilio. En China ya existen más de 7,500 dark kitchens, en India hay más de 3,500, mientras que en Estados Unidos están comenzando a ganar relevancia con 1,500 y en Reino Unido con apenas 750, señala el reporte de Euromonitor.

Exiten algunos formatos a tomar en cuenta:

  • Pura: Buscan espacios con excelente cobertura que los acerque a sus clientes potenciales en donde sólo instalan cocina y almacén de insumos para enviar pedidos a domicilio
  • Impura: Son espacios que tradicionalmente estaban preparados para restaurantes, se diseñó una experiencia y un “journey” para el comensal. Pero por tiempo de pandemia y en adaptación a la tendencia se tornaron en dark kitchen
  • Compartidas: Hay ubicaciones que tienen cocinas compartidas entre varios restaurantes. Es decir 4 marcas se ponen de acuerdo y en una misma cocina se prepara sushi, pizza, tacos y hasta postres
  • Híbrida: En momentos del día opera como restaurante tradicional y en otros momentos subarrenda su espacio para que otras marcas utilicen su espacio como dark kitchen

DatlaS_darkkitchen_cocinafantasma3

¿Qué característica tienen las dark kitchens?

  • La tasa de éxito de estos modelos son alrededor del 80%, la recomendación es buscar alimentos de tendencia
  • No tiene camareros o meseros, Sin ambientación y espacio para atender
  • Exigen una inversión menor que restaurantes físicos (entre un 15-20% menos)
  • Todos los menús en uno (Existe un menú más concreto para una marca sin tantas personalizaciones)
  • Las apps de delivery y pedido a domicilio son una extensión del negocio
  • Se preocupan por el “packaging” o el embalaje necesario para que la presentación del platillo se mantenga al momento de la entrega
  • La inversión en equipo es similar a esta: Estufa, refrigerador, horno, mesa de trabajo, sartenes, cuchillos, ollas, cazuelas, tablas, etcétera

El pase de diapositivas requiere JavaScript.

Recomendaciones para el éxito de una dark kitchen

1) Cuida tu oferta de platillos y alimentos. Cumple con calidad y supera expectativas. Sorprende.

2) Ofrece un muy buen servicio al cliente a distancia, busca fidelizar con algún programa de recurrencia

3) Ofrece precios competitivos. Considera que la cantidad de opciones al alcance son muchos más grandes que cuando estás en una calle de la ciudad. Compites contra más propuestas de valor, por lo que los precios deberán ser justos

4) Mejora tu comunicación. Domina y capitaliza las redes sociales para que puedas generar una experiencia lúdica y de antojo con tus comensales

5) Investiga qué beneficios ofrecen las plataformas de delivery y marcas. Algunas veces te dan créditos o se asocian en tu crecimiento siempre y cuando tengas una buena ubicación para tu negocio

***  También te puede interesar: ¿Cómo tener la mejor ubicación para mi tienda?

Datlas_Promo_Facebook_Suscribe

¿Qué tipo de inteligencia de datos se pudiera generar para dark kitchens?

Técnicas de análisis geo-referenciado o de big data que se han utilizado en la ubicación de otras franquicias pueden ser aprovechadas en estas circunstancias. Una buena investigación de datos podría darnos la siguiente información de un restaurante:

  • Nombre del restaurante
  • Ubicación geográfica
  • Id en Rappi, Uber Eats, SinDelantal, etc
  • Categoría de restaurante
  • Categoría de precio
  • Rating de Restaurante
  • Número de reseñas
  • Menú del restaurante

Un ejemplo de análisis exploratorio pudiera ser utilizando box-plot y validando para una serie de restaurantes cuáles es la media de precios identificada. Otra exploración es usar un gráfico de distribución para evaluar la distribución de precios de la oferta gastronómica en esa plataforma

El pase de diapositivas requiere JavaScript.

Podemos realizar una exploración de precios promedios por código postal, delegación o área conurbada. Otra variable de utilidad puede ser el rating. Entender cuál es el rating más alto y qué marcas de restaurantes se ubican en los extremos.

El pase de diapositivas requiere JavaScript.

Podríamos también generar nubes de palabras de los ingredientes o las palabras más usadas en un menú. Y darnos licencia para soñar para además de generar descriptivos empezar a cruzar variables.

Continuaremos avanzando en la generación de más inteligencia para el sector restaurantero así como para esta nueva tendencia del dark kitchen.

Datlas_Promo_Podcast_Suscribe

Hasta aqui la columna de hoy, te invitamos a escuchar nuestro podcast y a seguirnos en nuestras redes sociales. Te recomendamos

 

Saludos

Equipo Datlas

– Keep it weird-

 

Fuentes:

Ciencia de datos para todos : ¿Cómo ha cambiado la movilidad de los usuarios de Twitter en Monterrey por el covid-19?

“Twitter es lo qué está pasando en el mundo y sobre lo que las personas están hablando en este momento.”

Las redes sociales son relativamente nuevas y han cobrado importancia en nuestra vida cotidiana al grado que no nos sentimos cómodos si vamos a un restaurante y no publicamos en Instagram lo que ordenamos para que nuestros amigos se enteren donde estuvimos y que hacíamos ahí o por ejemplo cuando por la mañana nos levantamos a hacer ejercicio y es imposible no publicar nuestra foto en lo más alto de la montaña.

Es por eso que el análisis de las interacciones en las redes sociales ha cobrado la misma importancia, para muchos negocios, que las redes sociales en nuestras vidas. Por ejemplo, para saber de qué se está hablando de nuestra marca, si es algo positivo o negativo y cuantificarlo. Estos enfoques son muy bien conocidos en el área de análisis de textos.

Sin embargo, el día de hoy nuestro enfoque tomara otro rumbo. Responderemos a dos preguntas fundamentales: ¿Cómo ha sido el comportamiento de los usuarios en los últimos meses?  Y ¿Cómo ha cambiado por el covid-19?  

*También te puede interesar un estudio similar para Jalisco o CDMX

Desarrollo

Con una base de datos de alrededor 7200 check-in’s (el registro de una persona en cierto lugar), más de 15 variables (fecha y hora, lugar donde se hizo el registro, municipio de residencia, usuario, ubicación exacta, entre otras) y algo de trabajo se pueden generar diversos insigths de valor.

Pero antes de llegar a esos insigths de valor hay camino por recorrer. La primera pregunta en cuestión es: ¿Cómo conseguir este tipo de información en un sitio web tan protegida como lo es Twitter?

No hay forma de conseguir esta información si no es mediante la API (Application Programming Interface) de Twitter. La API cumple la función de una interfaz para que dos softwares interactúen y puedan intercambiar información. Para tu poder hacer un request desde tu computadora (Con programas como Python y R) y acceder a este tipo de información debes llenar una solicitud, una vez aprobada la solicitud Twitter te hará llegar las API keys, el identificador que te autentica como usuario de las API. Para más información clic aquí.

 

Una vez obtenido la información sigue la fase de trabajar los datos para posteriormente pasar a la fase de análisis. Nos referimos a la fase de homologar ciertas variables o categorizar observaciones en función de valores que toman algunas variables, en nuestro caso categorizamos los lugares a donde las personas han asistido los últimos meses. Otro ejemplo de esta fase es poner las fechas en un mismo formato (año/mes/día o día/mes/año) para no tener problemas al momento de visualizar los datos en una línea de tiempo.

Datlas_Promo_Facebook_Suscribe

 

Ahora si el plato fuerte, el análisis. Aquí empezamos viendo la estructura y distribución de cada una de nuestras variables, y modificar en caso de que algo este fuera de lugar, por ejemplo, las variables categóricas cambiarlas a factores si están como texto. Una gran parte del análisis es el momento de crear visualizaciones, esta es la parte creativa del analista porque ahora si que los límites para crear visualizaciones son muy extensos, claro, siempre con el cuidado de generar buenas visualizaciones no únicamente en el sentido de que se vean bonitas sino que también transmitan un mensaje claro y único. Otra gran parte del análisis es crear modelos estadísticos que expliquen a una variable (variable dependiente “y”) en función de otras variables (variables independientes “x”) y/o ayuden a predecir el comportamiento de la variable en el futuro.

Finalmente, llegamos a la etapa de conclusión y exposición de resultados, básicamente es ver el contraste entre la hipótesis que te hayas planteado o la pregunta que quieres responder y lo que los datos te dicen para después plasmarlo en una presentación o un texto.

Todas estas etapas aunque se escuchen muy “básicas” realmente las llevamos a cabo en nuestro análisis y es por eso que nos pareció importante no sólo exponer los resultados sino todo el desarrollo para que el lector que no este tan familiarizado en este ámbito pueda tener una mejor comprensión y no solo eso sino que se lleve un verdadero aprendizaje .

¿Qué encontramos?

Antes de empezar con las visualizaciones es importante mencionar que las primeras medidas preventivas en Nuevo León tomaron lugar el 17 de marzo del 2020, el día que cancelaron actividades escolares a nivel bachillerato y superior, y posteriormente el día 20 del mismo mes en los niveles básicos (primaria y secundaria).

La primera incógnita que nos gustaría responder es : ¿En qué magnitud o proporción ha disminuido el tráfico de check-ins en Twitter una vez iniciadas las medidas preventivas covid-19?

Esta gráfica ordena los días de la semana por mes, cada color es una etapa diferente: diciembre-2019 (azul) , antes de prevención covid (verde) y una vez iniciada la etapa de prevención covid (rojo).
Esta gráfica ordena los días de la semana y nos ayuda a visualizar la proporción de check-ins realizados en cada etapa.

 

 

Para poder crear estas visualizaciones tuvimos que categorizar nuestros datos en tres grupos (diciembre-2019, Antes de prevención covid y Después de prevención covid). En las dos gráficas se aprecia una caída significativa en los check-ins registrados una vez iniciadas las prevenciones covid. Se podría argumentar que esto se debe a la naturaleza de los meses abril, mayo y junio, sin embargo, llama mucho la atención que la primera mitad de marzo tenga mucha actividad y la segunda mitad se vea estancada. Hablando más puntualmente los chek-ins tuvieron una disminución del 75%.

Datlas_Promo_Podcast_Suscribe

 

Otra visualización que hicimos fue una especie de heatmap que nos permitiera ver por mes cuales fueron los municipios del área metropolitana con mayor actividad y en este sentido ver que municipios menos siguieron las recomendaciones de los expertos.

Heatmap de actividad por municipio y mes. No se estandarizo para numero de check-ins por habitante.

Ahora, pasaremos a contestar la pregunta ¿Cómo ha cambiado el comportamiento de los check-ins durante el covid? Para responder esta pregunta hicimos un cluster de 17 grupos y visualizamos la proporción de check-ins para cada grupo. Algunos de los grupos son: comida (restaurantes), entretenimiento (cines, boliches, parques, etc), Salud (hospitales, clínicas y gimnasios), Autoservicio (tiendas de autoservicio como H-E-B y Walmart), residencial (zonas residenciales), etc.

Proporción y orden de los grupos en las diferentes etapas de la contingencia. Comparativa de tipo de lugar donde la gente hace check-ins por etapa.

Podemos observar que en las primeras dos gráficas el orden y proporción de los grupos son muy parecidos y esto cambia considerablemente para la tercera. Dos grupos que han cobraron mucha importancia durante el tiempo de la pandemia son autoservicio y residencial, por otra parte, los grupos de entretenimiento, vida nocturna y aeropuerto pasaron de ser primeros a últimos. Considerar todos los ángulos a la hora de hacer un análisis es muy importante porque si no nos detuviéramos a ver a donde realmente la gente ha acudido y solo hubiéramos analizado las primeras tres gráficas probablemente nos quedaríamos con una mala impresión de los municipios de Monterrey y San Nicolás que han sido los municipios con mayor actividad y precisamente con esta gráfica podemos ver que mucha de esa actividad es desde sus casas.

Datlas_Promo_Youtube_Suscribe

Por último ¿qué podemos decir de estos resultados? Tenemos información suficiente para decir que la pandemia ha cambiado la manera en la que las personas hacen check-ins en magnitud y forma. En su mayoría la gente se está quedando en casa y está asistiendo primordialmente a lugares de primera necesidad como tiendas de autoservicio donde surten la despensa y restaurantes, no obstante, se sigue asistiendo a lugares que probablemente no se consideren de primera necesidad como ir al aeropuerto para ir a vacacionar y asistir a hoteles, donde, probablemente hoy sean los lugares con mayor riesgo de contagio y es por eso que invitamos a todos nuestros lectores a seguir las indicaciones de los expertos y no salir de casa a menos que sea necesario.

Esta columna fue desarrollada por Alejandro Rodalgo,  participante del programa de “intern” de Datlas en investigación. 

Saludos

Equipo Datlas

NUEVO DATLAS PLAYBOOK VOL. II – 100 usuarios lo recibirán antes que nadie

En Datlas iniciamos el año con muchos lanzamientos. Ya lucimos nuestro nuevo marketplace de datos y apis donde estaremos activando cupones de descuento durante el año. También lanzamos la plataforma de Laura para hacer estudios de mercado en cuestión de horas, gracias a nuestro sistema apoyado por inteligencia artificial. Y buscando continuar aportando a los entusiastas de datos hemos terminado de redactar nuestro “Datlas Playbook Vol. II”. En esta columna explicamos brevemente qué es un playbook y te invitamos a la dinámica para ser una de las primeras 100 personas en recibir este contenido.

Datlas_barra_suscribir

¿Qué es un Data Playbook?

Un “Data Playbook” es un documento que contiene “jugadas” y técnicas específicas para tu negocio alrededor de una estrategia de datos. Más que teoría, este texto es un diario de aprendizajes basados en ejecución de accionables.

Tras el éxito de nuestra primer versión ahora quisimos lanzar una segunda parte. En esta ocasión con más enfoque al desarrollo de estrategias para implementar Big Data.

A continuación te compartimos el índice

El pase de diapositivas requiere JavaScript.

Este obsequio lo podrás recibir antes que nadie participando en la siguiente dinámica

  1. Entra a nuestro marketplace y selecciona el producto de prelanzamiento. Puedes hacerlo dando click aqui.
  2. Después integra el carrito a tu cesta y vete directo a la pasarela de pagos. Da click aqui para llegar a la ruta directa

Marketplace_Playbook_2020_pasarela

3. Ingresa tu correo y da click en pagar. Completa tus datos y finaliza pedido.

4. El 27 de Enero serás de las primeras personas en recibir el nuevo playbook

Datlas_barra_suscribir

Hasta aqui la columna de hoy, esperamos te guste el próximo Data Playbook, te suscribas y aproveches los descuentos que estaremos compartiendo.

*********************************************************************

En Datlas nos dedicamos a transformar datos en decisiones de una manera ágil y sencilla. Apalancados de técnicas de big data e inteligencia artificial hemos desarrollado 3 plataformas la servicio de nuestros más de 500 usuarios. Con Datlas podrás tener a tu alcance estudios de mercado y soluciones de analytics de inmediato. Para más información contácta a ventas@datlas.mx

*************************************************************************/

Equipo Daltas

-Keep it weird-