Archivo de la etiqueta: big data

4 pasos para preparar tus bases de datos para análisis

Hoy en día la transformación digital cuenta con distintos pilares dentro de los que destaca la analítica o análisis de datos. Apalancar todo el valor que esconden las grandes cantidades de información disponibles en la actualidad permite que los negocios y la sociedad, en general, se organice y genere valor de formas innovadoras. Para lograr un análisis de datos, la materia prima es clave: las bases de datos. Como cualquier materia prima las bases de datos guardan atributos y características que las hacen ser mejores o peores al momento de ser utilizadas como input para un análisis. En esta columna vamos a revisar 4 sencillos pasos con los que podrás asegurar que tus bases de datos estén preparadas y listas para realizar análisis de calidad que generen un verdadero valor diferencial para tu negocio. Estos 4 pasos son: limpieza, reestructura, homologación y clasificación.

free_Suscriber

#1 Limpieza de datos

El llamado data cleansing, por su traducción al idioma inglés, es el proceso de descubrir y corregir o, en casos extremos, eliminar registros de datos que han sido identificados como erróneos dentro de una tabla o base de datos. Este proceso de limpieza de datos permite identificar datos incompletos, incorrectos, inexactos, no pertinentes, etc. y luego sustituir, modificar o eliminar estos datos sucios.

Hay distintos métodos para limpieza de datos. Uno de ellos es el análisis gramatical que identifica errores de sintaxis, es decir, si el sistema lo tiene declarado como una variable numérica y el usuario registro una palabra, este tipo de análisis lo identifica. Existe la transformación, que básicamente ajusta los datos dentro de un formato esperado, en la mayoría de las ocasiones la transformación es para normalizar los datos y ajustarse a valores mínimos y máximos. Otra forma es el eliminar duplicados, que como su nombre lo dice, simplemente identifica registros repetidos y elimina uno de ellos. Finalmente, existen métodos estadísticos mediante los cuales la estadística descriptiva hace visualmente reconocibles las anomalías y posteriormente expertos se encargan de ajustar ese tipo de datos mediante la sustitución de los mismos por valores promedios o algún otro tipo de tratamiento, dependiendo de la naturaleza del dato.

Una vez detectados estos datos “sucios” es necesario identificar las causas para poder establecer flujos de trabajo ejecutables de forma automática para que corrijan o excluyan este tipo de datos. En temas técnicos es común el uso de bibliotecas como Pandas para Python o Dplyr para R.

datlas_mx_blog_data_cleansing

#2 Reestructura de bases de datos

Este segundo paso del proceso de preparación de bases de datos tiene que ver literalmente con tomar una base de datos de cierta estructura como, por ejemplo, 10 columnas por 3 filas y alterarla de tal forma que al final quede una base de datos completamente nueva de, por ejemplo, 6 columnas por 7 filas, pero con los mismos datos ya limpios que obtuvimos en el paso anterior. Para ilustrar este punto utilizaremos un ejemplo muy sencillo:

Supongamos que levantamos una encuesta sobre productos y marcas que podemos encontrar en el baño de cada entrevistado. Los resultados de la encuesta nos darían una base de datos de la siguiente forma:

Entrev edad sexo Prod_1 Prod_2 Prod_3 Marca1 Marca2 Marca3 NSE
1 10 F Desodo

rante

Pasta de dientes Jabon líquido AXE CREST NUBELUZ A
2 25 M Pasta de dientes Sham

poo

Jabon en gel COLGATE ELVIVE AMIGO B
3 23 F Crema para peinar Pasta de dientes Jabon de barra SEDAL COLGATE ESCUDO C

Si quisiéramos que los datos nos digan que artículos son los que las mujeres de 24 a 30 años tienen en su baño, necesitamos manipular los datos de forma que podamos obtener como respuesta a esta pregunta un cálculo de frecuencia.

En este segundo paso es donde tomamos en cuenta las hipótesis o los objetivos de análisis para generar la reestructura de la información. En este caso, por ejemplo, la base de datos ya reestructurada quedaría así:

Entrevistado Edad Sexo Num_Prod Descripcion Marca
1 10 F 1 Desodorante AXE
1 10 F 2 Pasta de dientes CREST
1 10 F 3 Jabón Líquido NUBELUZ
2 25 M 1 Pasta de dientes COLGATE
2 25 M 2 Shampoo ELVIVE
2 25 M 3 Jabon en gel AMIGO
3 23 F 1 Crema para peinar SEDAL

Con lo cual podríamos establecer, suponiendo que utilicemos Excel, un filtro en la columna de edad para seleccionar las edades superiores a 24 años e inferiores a 30, al mismo tiempo que filtramos en la columna de sexo la letra F (de femenino) y simplemente calculamos el total de filas que quedan desplegadas de la tabla. De esta manera respondemos la pregunta inicial.

#3 Homologación de bases de datos

En este punto ya comenzamos a jugar con distintas bases de datos, es decir, muchas veces las empresas tienen distintas áreas donde el modo con el que tratan los datos es distinto. Por lo tanto, al momento de tratar de unificar resultados o compararlos, puede que no se estén tomando parámetros similares y eso difícilmente podrá permitir que se realicen cruces de información de manera eficiente.

Al homologar bases de datos es necesario generar estructuras preestablecidas y un glosario de variables que defina claramente los formatos y las especificaciones necesarias para cada tipo de variable registrada. Un caso muy común por ejemplo es el formato de fechas entre dos bases de datos distintas, mientras uno maneja el formato día/mes/año otro tiene registros como mes/día/año con lo que a la hora de hacer un cruce de información las fechas nunca logran empatar y es imposible realizar un cruce de forma adecuada.

datlas_mx_blog_homologacion_bases_de_datos

#4 Clasificación de bases de datos

Finalmente, tenemos el paso de clasificación. En este punto literalmente el objetivo es darle una etiqueta o categoría a cada base de datos de acuerdo al contexto que estemos manejando, la utilidad de la misma base de datos o las necesidades que estas satisfagan al interior de la organización. De forma general existen dos tipos de clasificaciones para las bases de datos: según la variabilidad de los datos o según su contenido.

Dentro de la primera clasificación existen las bases de datos estáticas, que generalmente son bases de datos de consulta, con registros históricos que no van a cambiar. El típico ejemplo aquí son las ventas de hace 5 años para una compañía de artículos deportivos. Por otro lado, están las bases de datos dinámicas, donde la información cambia a través del tiempo por actividades como: actualización, borrado y edición de datos. El mejor ejemplo en este caso son las bases de datos de clientes (CRM) donde hay constantes actualizaciones de información o incluso eliminación de prospectos.

En la segunda clasificación tenemos las bases de datos bibliográficas, que guardan literalmente registros de autor, fecha de publicación, editorial, etc. En contraste existen las bases de datos de texto completo que almacenan el contenido completo de las citas bibliográficas anteriormente citadas, por ejemplo. También existen subclases como directorios, bibliotecas, etc.

datlas_mx_blog_clasificacion_bases_de_datos

De esta forma logramos tener una integridad entre los datos almacenados, la base de datos que los resguarda, las distintas bases de datos dentro de una organización y su capacidad de complementarse al momento de realizar un análisis. Así de fácil podemos cuidar la calidad de nuestros datos para asegurar que podamos aprovechar todo el poder y las ventajas del big data a la hora de realizar analítica.

Si te interesa conocer más acerca de estos procesos o necesitas ayuda con tus bases de datos, visita nuestro Marketplace o contáctanos en nuestras redes sociales

@DatlasMX

 

Dashboards de negocios, guía para principiantes – Datlas

Un avión donde viajan 300 personas que puede ser conducido por 2 personas, una megaciudad de más de 5 millones de habitantes conducida desde un “war-room” (C4 ó C5) con 20 personas, o la gestión de un mundial de fútbol en más de 20 ciudades a la vez controlado por un equipo de 40 profesionales ¿Qué herramienta tienen en común?  Todos en algún momento usaron dashboards.

Datlas_barra_suscribir

En los negocios ocurre igual. Un tablero de control o dashboard es un lugar donde se pueden monitorear los aspectos más importantes del quehacer de una organización. Sinedo así,en el campo de “inteligencia de negocios” o “business intelligence”, este tipo de herramientas le ayuda a los tomadores de decisiones y operativos a reaccionar de forma efectiva a cambios en el negocio.

1) ¿Qué es un dashboards de negocios?

Es un gráfica que refleja el estatus operativo de datos recolectados en tiempo real (o casi tiempo real) visualizados en una plataforma. Un ejemplo de lo que podría ver un empresa que se dedica a envíos de comida a domicilio en un dashboard.

El pase de diapositivas requiere JavaScript.

Así como los pilotos en un avión monitorean la altura, velocidad, ruta y otros aspectos del vuelo. En un negocio podríamos vigilar las órdenes , las ventas, tiempos de entregan las entregas exitosas, los artículos más vendidos, entre otros.

Te puede interesar nuestra columna titulada: Ranking de Dashboards de COVID-19.

2) Características de un dashboard

Para ser considerado un buen panel de control tendría que integrar:

  • Un sistema valioso de indicadores
  • Visualización e interacción intuitiva
  • Buena calidad de datos como insumo y amplitud en cortes temporales
  • Un sistema completo de arquitectura que permita actualización automática

Recomendamos que leas nuestro ejemplo en: Analítica en Dashboards para Turismo.

3) ¿Cuáles son los tipos de dashboards?

Datlas_niveles

  • Dashboard estratégico: Resume y sintetiza los indicadores más importantes de la compañía para tomar decisiones de manera rápida basadas en datos
  • Dashboards analíticos: Puede ser estratégico y operativo, destinado a que los equipos de mandos altos y medios puedan tomar decisiones de manera más ágil
  • Dashboards operativos: Enfatiza el reporteo de información constante y continua
4) ¿Qué acciones debería habilitar un dashboard?
A) Seguimiento a KPIs
Datlas_saludkpis

Una vez que se realizó el trabajo de planificación estratégica donde se delimitaron los KPIs que los equipos de trabajo deberán de cuidar para que los proyectos tengan buena salud es importante poder visualizarlo en el dashboard. Por lo mismo es útil generar un “semáforo” donde rojo sea señal de gran oportunidad para mejorar y verde sea buena salud.

B) Alertar de comportamientos fuera de rango o prevenciones
Datlas_alertas

Las mejores implementaciones de inteligencia de negocios generan tableros que están listos para alertar sobre comportamientos críticos o situaciones que necesitan inmediata atención. Idealmente estas notificaciones tienen que ser desarrolladas por las personas con más experiencia en la organización y con base a atender las oportunidades que de no atenderse podrían representar un costo no reemplazable a la compañía.

C) Monitoreo en tiempo real
Datlas_gif_Realtime_Dashboard

En una etapa más avanzada habrá que procurar que el monitoreo de los datos sea en tiempo real. Esto requiere necesidades más sofisticadas de infraestructura y que se cuenten con iniciativas de ciberseguridad para asegurar que no haya fugas de información. Esto permitiría una toma de decisiones más oportunas sobre datos que sean reales.

Cierre

Los dashboards permiten ser más eficientes y eficaces en la toma de decisiones operativas y en el cumplimiento de la estrategia de una organización. Hay que trabajar de la mano con el área o la función de planeación en nuestra compañía para generar buena calidad de KPIs, alertas y sobre todo garantizar que los datos más dinámicos sean actualizados en tiempo real.

Datlas_barra_suscribir

Si te interesa seguir conociendo más de este tema (KPIs y herramientas de medición te invitamos a nuestra próxima charla. Puedes registrarte aquí GRATIS: https://bit.ly/dfuturos4 

WhatsApp Image 2020-07-06 at 9.05.32 AM

También solicitar en nuestro marketplace una llamada para platicar sobre este tema y evaluar cómo con alguno de nuestros casos aplicados podemos ayudar a tu organización.

Fuentes:

V de Variedad en Big Data: datos estructurados y no estructurados

En más de una ocasión hemos tenido la oportunidad de presentarnos en foros donde hablamos de Big Data como esta nueva gran tendencia dentro del marco de la transformación digital. Al comenzar cada una de nuestras presentaciones, como es nuestra fiel costumbre, contextualizamos acerca de los conceptos que abordamos. Dentro de la explicación de lo que es el Big Data hacemos referencias a las famosas 5 Vs: Volumen, velocidad, variedad, veracidad y valor. Implícitamente, dentro de la característica de variedad hablamos del origen de los datos, las fuentes de donde provienen y del tipo de estructura que tienen. En esta columna vamos precisamente a profundizar en los datos y las bases de datos estructuradas y no estructuradas, lo que son y como es que nosotros las apalancamos dentro de los reportes automatizados Laura para capitalizar un mejor entendimiento, análisis y descubrimiento de oportunidades con alto impacto para el negocio.

free_Suscriber

Como punto de partida hay que entender a que nos referimos con datos estructurados y no estructurados. En primer lugar, los datos estructurados se refieren a la información que se suele encontrar en la mayoría de las bases de datos relacionales (Relational Database Management System o RDBMS por sus siglas en inglés), es decir, en un formato estructurado usando filas y columnas. Suelen ser archivos de texto que se almacenan en formato tabla u hojas de cálculo con títulos para cada categoría que permite identificarlos. Son datos que tienen perfectamente definido la longitud, el formato y el tamaño y que pueden ser ordenados y procesados fácilmente por todas las herramientas de minería de datos. De igual manera, los datos pueden generarse de forma humana o mecánica siempre que los datos se creen dentro de una estructura RDBMS. Para ejemplificarlo de forma más simple, imagina cuando tomaban lista en el salón de clase y el profesor tenía una tabla con nombres, apellidos, la fecha de la clase y un montón de palomitas. Así se “ven” los datos estructurados.

El pase de diapositivas requiere JavaScript.

Por otro lado, existe una clasificación diametralmente opuesta a esta: los datos no estructurados. Aunque si bien entendemos que técnicamente existe también el término de datos semiestructurados en esta ocasión utilizaremos los opuestos para ejemplificar el punto de la variedad dentro del big data y los beneficios de fusionar los distintos tipos de datos a la hora de generar los análisis. Así que, volviendo al tema, los datos no estructurados, que son la otra cara de la moneda son aquellos datos, generalmente binarios, que no poseen una estructura identificable. Es un conglomerado masivo y desorganizado de varios objetos que no tienen valor hasta que se identifican y almacenan de manera organizada. No tienen un formato especifico, pueden ser textuales o no textuales. En su modo más simple, son documentos en PDF, archivos de Word, videos, audios, las fotos satelitales de las hectáreas de siembre que tiene una empresa agrícola, entre otros ejemplos. De la misma forma que los datos estructurados, este otro tipo de datos puede ser generado tanto por humanos como por maquinas.

datlas_mx_blog_datos_no_estructurados
Ejemplo de datos no estructurados (textual)

Ahora bien, ¿Qué relevancia tiene esta variedad de los datos? ¿Qué relación guarda con esto del Big Data? Pues precisamente estadísticas mostradas por empresas como Kyocera estiman que alrededor del 80% de la información relevante para un negocio se origina en forma no estructurada, principalmente en formato texto. Esto quiere decir que, al tener la posibilidad de integrar datos no estructurados al análisis, automáticamente el volumen de información (otra de las V del Big Data) disponible para análisis aumenta a más del doble. Imagínate que llegara un nuevo vendedor y pudiera leer todos los corres de prospección escritos en los últimos 5 años de historia de la compañía. Toda la riqueza detrás de ese tipo de ejercicio hoy es posible gracias al Big data, pero tomar ventaja de los datos no estructurados es una tarea retadora, ya que existe la necesidad de organizar los archivos, categorizar el contenido y entonces obtener información que pueda estructurarse de tal forma que sea capaz de fusionarse con los datos ya estructurados. Aunque sin duda hoy existen en el mercado herramientas de software para el procesamiento, gestión o almacenamiento de este tipo de datos, sigue siendo importante el papel de los analistas de negocio o los mismos dueños para establecer una priorización de esfuerzos con base al beneficio potencial que pudiera obtenerse de ese esfuerzo por capitalizar los datos no estructurados.

datlas_mx_blog_datos_no_estructurados_a_estructurados

Finalmente, desde nuestra experiencia hemos logrado consultar bases de datos estructuradas y no estructuradas para realizar los reportes automatizados de Laura y entregar un verdadero valor agregado al cliente comparado al de los estudios tradicionales que generaba un equipo de analistas sin este tipo de herramientas. Tomemos como ejemplo las redes sociales, un tweet. Hoy es muy común que la gente se exprese libre y abiertamente en twitter acerca de lo que le gusta, le disgusta o incluso donde esta. En nuestro caso, uno de los elementos integrados dentro de Laura es el análisis de tráfico peatonal por categoría de negocios, es decir, que tanta gente está tweeteando acerca de una cierta marca de restaurante o producto. Para poder apalancar estos datos de forma inteligente se hace un proceso de análisis de texto que extraer el nombre del establecimiento, lo coteja con un diccionario de negocios, lo clasifica dentro de la categoría a la que pertenece ese negocio y finalmente lo agrega, de forma estructurada, en una base de datos que pasa a ser consultada como un mapa de calor dentro de nuestras plataformas de Mapas de Inteligencia y a su vez como una imagen de la ubicación analizada y el entorno al hablar de los reportes Laura. Esto nos ha permitido apoyar a negocios a tomar mejores decisiones de ubicación, ponderando no solamente los típicos indicadores estructurados y “fijos” sino también la información no estructurada y, en este caso, dinámica para ofrecer una perspectiva realmente nueva y más holística de las condiciones a las que se enfrenta el negocio al momento de tomar una decisión.

datlas_mx_casos_uso_consultoria_derrama_economica_luztopia_2019

Como este caso hemos aprovechado otro tipo de datos no estructurados para apoyar a empresas de distintas formas, en tu caso ¿generas información no estructurada? ¿te interesa aprovechar el poder que esconde esa información? ¿o simplemente te gustaría experimentar con la información no estructurada que existe allá afuera y que hoy podemos poner a tu disposición? Contáctanos y cuéntanos

@DatlasMX

 

Lo que esconden tus datos: Análisis de CRM para mejorar precios, catálogos, marketing y ¡más!

La vida de un negocio son sus ventas. La complejidad es que las ventas son tanto arte como ciencia. Uno de los retos más comunes cuando trabajamos con empresas o grandes corporativos es el descifrar la fórmula para construir una estrategia comercial exitosa. Sin duda en estos tiempos esa fórmula se vuelve dinámica ante las circunstancias y son muchos los elementos a configurar. Por suerte la materia prima detrás de toda la parte “científica” de esto se encuentra en nuestro elemento favorito: los datos. En esta entrada vamos a platicar acerca de las distintas formas en las que los datos comerciales y de tu CRM se pueden usar para capitalizar mejoras en precios, catálogos, marketing, programas de descuentos y mucho más.free_Suscriber

Antes de comenzar es crucial entender un poco de historia. La gestión de la relación con clientes ha sido uno de los componentes más antiguos de los negocios. La infalible pluma y papel fueron suficiente en su momento para llevar el registro básico de las ventas y los clientes. En los años 50´s llegó el famoso Rolodex (se vale buscar en Google, yo también lo descubrí recientemente) que ofrecía la capacidad de girar los registros mientras añadías nuevos clientes y actualizabas la información de otros ya existentes. El siguiente gran paso se da a inicios de los 80´s cuando llegan las bases de datos a revolucionar el proceso de consolidación de la información de los clientes, aunque a finales de esa década el aprovechamiento de estas bases de datos era aún limitado, figuraba tan solo como un directorio o Rolodex digital, con pocos insights y casi nulas interacciones de la compañía con sus clientes. Hasta inicios de los 90´s comienza la automatización de los procesos de ventas y justo en 1995 se acuña el termino Customer Relationship Management o CRM, por sus siglas en inglés. A partir de esa década comienza la profundización en los análisis y una gestión mucho más detallada e inteligente de la relación con los clientes.

El pase de diapositivas requiere JavaScript.

Ahora bien, el CRM perse es una herramienta tecnológica pero su punto de partida, como en todo, son los datos que se alimentan en él. En este sentido la primera etapa importante antes de analizar los datos comerciales y de CRM es precisamente generarlos. Dentro de esta etapa de recolección de datos es importante establecer los procesos de negocio en donde interactúas con tu cliente y se abre la posibilidad de ese intercambio de datos o de información. Asimismo, es crucial que como negocio definas los datos “necesarios” y los datos “deseados” que buscas obtener de tus clientes para poder comenzar a llenar este CRM. Finalmente, debes establecer una mecánica de incentivos para poder propiciar de manera natural y benéfica para ambas partes el hecho de compartir estos datos.

Vamos a aterrizarlo en un caso de negocio. Eugenio, uno de nuestros clientes dentro de la industria energética, nos pidió apoyo para generar su estrategia go-to-market de su nuevo panel solar. Esta claro que analizamos sus datos comerciales y de su CRM, pero lo interesante aquí es resaltar los 3 atributos que mencionamos en el párrafo anterior. Eugenio tenia claro que uno de sus procesos de negocio mas importantes era el hecho de la interacción del cliente en su página web, dado que por la naturaleza del producto y el servicio que lo acompaña, el anaquel digital resultaba muy relevante. Después estableció que los datos que necesitaba obtener del cliente eran su ubicación y el consumo promedio de luz, aparte de los datos de contacto. Fue así como se le ocurrió armar una “calculadora de ahorro” dentro de su sitio web como un incentivo para que el cliente pudiera compartir estos y otros datos a cambio de un beneficio directo que era el calculo del monto estimado de ahorro que podía obtener con el nuevo panel solar que se estaba ofreciendo.

datlas_mx_blog_crm_customer_master_data_management-01

Hasta aquí se ha logrado establecer una dinámica para obtener los datos, el paso siguiente es precisamente adentrarnos en los datos. Cuando estamos analizando datos comerciales y de CRM es importante hacer un diagnostico y establecer el inventario completo de variables con el que vamos a estar trabajando, es decir, a pesar de que para un negocio un medio de contacto sea el teléfono, para otro podrá ser el correo electrónico o incluso ambos. En este sentido el punto de partida es entender muy bien la base de datos, las variables con las que vamos a estar “jugando” y comenzar a establecer algunas categorías de datos como, por ejemplo: perfil, canal fuente, dinámica. En el caso de Eugenio por ejemplo cuando hablamos de la categoría perfil estamos agrupando todos los datos que hablan del cliente como, por ejemplo: su nombre, su correo, su teléfono, el lugar donde vive, etc. Cuando hablamos de canal fuente estamos hablando de la forma en la que conoció y se entero de la empresa, como llego, si tuvo algún costo esa publicidad por la que se enteró, etc.

Finalmente, en la categoría de dinámica es necesario hacer una profundización todavía más importante ya que nos referimos a los datos que distinguen y diferencian a los clientes a lo largo de las etapas del proceso o ciclo de ventas. En este caso cuando hablamos de proceso o ciclo de ventas es relevante comprender la metodología que esta utilizando el negocio. Sabemos que existe mucha literatura, estudios y propuestas acerca de ventas, procesos y ciclos, algunas de 5 pasos, 7 etapas, 9 fases, etc. Aquí lo esencial es entender la forma en la que el negocio distingue entre un cliente que esta en la etapa 1 y como es que pasa a estar en la etapa 2, por ejemplo. En el caso de Eugenio, ellos tenían una gestión muy sencilla con 3 grandes etapas: lead, prospecto y cliente (o venta). En su equipo definieron un lead como todo aquel individuo que haya mostrado interés en su producto a través de compartir su información. Esa persona no podía pasar a la etapa de prospecto si no habían ocurrido 3 cosas: había entrado en contacto con un representante de ventas, había aceptado que se le generara una cotización y ya se le había generado y comunicado esa cotización. Finalmente se convertía en cliente (o venta) una vez que aceptada dicha propuesta o cotización y se generaba la factura de venta. De esta manera, se logra una claridad en cuanto a los datos que permite entender a quien realiza el análisis donde buscar y que datos utilizar al momento de atacar los distintos retos o hipótesis que se planteen al inicio del ejercicio.

El pase de diapositivas requiere JavaScript.

En cuanto se tiene claro los datos y las estructuras del CRM y la información comercial es momento de apalancarla para atacar los retos del negocio. En este caso, por ejemplo: mejorar precios, catálogos, marketing y programas de descuentos.

En el caso de mejoras o cambios en precio, tomando como ejemplo a Eugenio y su negocio, es de suma importancia poder apalancar los datos que tienen que ver directamente con la conversión, es decir, con la parte del proceso en el que pasa de prospecto a cliente. Lo que se hace aquí es agrupar a aquellos individuos que hayan tenido como principal indicador de “no conversión” un tema del precio y utilizar los datos del CRM para generar una segmentación. Ahora bien, cuando nos referimos a segmentación no estamos hablando del típico hombre/mujer, edad, etc. Sino un tema de necesidades, es decir, hay que descifrar que nos pueden decir los datos acerca de la necesidad o el beneficio percibido por el cliente en contraste con el precio. Por ejemplo, en el caso de Eugenio, ellos tenían claro el consumo promedio, con lo que pudieron hacer un análisis y encontraron una correlación entre consumo promedio y el precio estándar del nuevo panel, de tal forma que se dieron cuenta que para el punto de precio del nuevo panel el segmento de clientes al que debían dirigirse se distinguía por tener una necesidad de ahorro a partir de cierto consumo. ¿Y eso que con el precio? Precisamente estos insights permitieron que se buscaran alternativas para generar productos con un punto de precio más bajo para ese segmento detectado o incluso explorar alternativas como financiamientos, arrendamientos o planes de pagos que pudieran tener un impacto indirecto en la percepción del precio por parte del cliente.

datlas_mx_blog_crm_pricing

Por otro lado, en el tema de mejoras al catálogo de productos el acercamiento al reto debe darse de forma distinta. Retomando el ejemplo de Eugenio y su negocio, para este punto estaríamos enfocándonos en analizar los datos dentro de las etapas de lead y prospecto, para destacar cuales fueron aquellos productos en los que las personas mostraron más interés. Igualmente cabe la posibilidad de una segmentación por necesidades. Si analizamos, por ejemplo, las palabras claves o los anuncios utilizados en las campañas de generación de leads y las cruzamos con términos relacionados nos podríamos dar cuenta, como Eugenio, que existe un particular segmento de clientes que no solo está interesado en paneles, sino que en el contexto de su búsqueda esta preocupado por el medio ambiente, busca alternativas de energía sustentables, renovables, etc. De tal suerte que pudiera explorarse, haciendo quizá un A/B testing, la forma de incluir dentro del catalogo de productos unos focos o bombillas de tecnología lead ya que consumen menos energía, iluminan más, etc. De esta forma hay un impacto directo en el catalogo de productos.

datlas_mx_blog_consultoria_crm_catalogo

Finalmente, para el tema de marketing, que sin duda es todo un universo y un mundo en sí mismo, existen bastantes formas de apalancar los datos comerciales y del CRM para enfocar mejor las campañas de mercadotecnia. En el caso de Eugenio, e incluso para nosotros, la información de la fuente desde la que se genero ese lead ha sido muy importante para discriminar entre los distintos canales de difusión y marketing. Igualmente, los datos del perfil del cliente nos han ayudado a definir áreas geográficas, zonas, regiones en donde enfocar puntualmente las campañas. Complementando con el punto anterior y apalancando incluso también información de la fase de cliente (o venta) se pudieran analizar atributos o características claves que el cliente percibe y expresa acerca del producto como para ajustar los mensajes, las frases y los anuncios en términos de lenguaje, beneficios a comunicar y formas de realizar el acercamiento.

Así que estas son algunas de las formas en las que hemos apoyado a nuestros clientes a aprovechar toda la información comercial y de su CRM para generar mejoras que impacten en los resultados de su negocio. Si estas interesado en explorar algo como esto te invitamos a visitar nuestro Marketplace y agendar una sesión con nosotros para platicar al respecto y ver la forma en que pudiéramos ayudarte.

Hasta aquí la columna de hoy, gracias y no dejes de compartirnos tu opinión en redes sociales

@DatlasMX

 

5 pasos para aprovechar los datos de tus puntos de venta y mejorar tus resultados

Hace apenas un par de años comenzamos a escuchar el famoso concepto de transformación digital en las empresas. Este concepto hace referencia al aprovechamiento y la inserción de tecnología y digitalización dentro de los procesos de negocios. Uno de los pilares más importantes dentro de esta transformación digital es el análisis de datos. En un contexto en donde los datos y la información son lo más abundante, la necesidad de aprovechar este gran bagaje de información para la toma de decisiones de negocios se ha vuelto crucial. En esta columna vamos a hablar de un sencillo proceso de 5 pasos con el que hemos apoyado a los negocios a aprovechar la generación de datos desde sus puntos de ventas para capitalizar accionables comerciales y operativos que han impactado directamente sus resultados de manera positiva.

free_Suscriber

Para comenzar es necesario un poco de contexto. Cuando hablamos de aprovechar la generación de datos existe un componente importante que responde a las condiciones actuales de los negocios: el volumen. Mientras hace unas décadas la disponibilidad de información se limitaba a un par de libros contables, hoy las empresas tienen la capacidad de consumir información externa y, sobre todo, de obtener y generar una cantidad sin precedentes de variables respecto a sus transacciones, clientes y procesos. Es precisamente aquí en donde se introduce el famoso concepto de Big Data. Sin duda hemos hablado de este concepto en entradas anteriores, pero nos gustaría citar una frase del CEO de BBVA Analytics, Fabien Girardin, que sintetiza muy bien las ventajas de este concepto diciendo: “Lo que es nuevo con el Big Data, es la cantidad de datos que nos permite entender el mundo de mejor manera, y cuando digo ‘el mundo’ me refiero a los clientes, empresas, y también como funciona la propia organización. Eso nos permite realmente medir y entender los procesos, intentar automatizarlos, y ayudar a la toma de decisiones de manera nueva”.

Ahora bien, veamos como es que estas técnicas de aprovechamiento de grandes cantidades de información se pueden capitalizar para tu negocio o la empresa donde laboras. La receta consta de 5 sencillos pasos que se ilustran de una manera magistral en la siguiente imagen:

datlas_mx_blog_data_to_wisdom

Paso #1: Los datos

La primera etapa tiene que ver precisamente con la materia prima, es decir, con los datos. Este es el punto de partida para poder derivar verdadera inteligencia. Al hablar de datos hay que tener claros dos puntos importantes: el primero de ellos es responder la pregunta ¿dónde se esconden los datos? Muchos de nuestros clientes al principio aseguran que la falta de análisis dentro de su negocio tiene su origen en la “falta de datos”, pero esto no es necesariamente real. Los puntos de venta son por excelencia grandes generadores de datos. Sin duda no son los únicos, por lo que es importante mapear el viaje completo del usuario para identificar los puntos de interacción (touch points, en inglés) en los que el cliente interactúa con el negocio y en donde podemos estar capturando información.

Tomemos como ejemplo una tienda en línea, que han visto una evolución significativa en estas circunstancias de cuarentena. Para hacerlo todavía más simple pensemos en una tienda en línea que vende artículos para bebes. En este caso, el usuario tiene un viaje que podemos simplificar: el usuario conoce la marca/productos, entra a la página web, interactúa con el catalogo de productos, selecciona los artículos que va a comprar, realiza la transacción y sale contento(a) a esperar la entrega de los artículos que adquirió. Tan solo en este simple “viaje” podemos encontrar que el punto de venta ha logrado capturar datos como: edad, sexo, email y teléfono del cliente; el canal de procedencia, el tiempo que dedico a cada sección de la página, donde hizo click, los productos que estuvo evaluando, los filtros que utilizó, los artículos relacionados directamente a aquellos que incluyó en su carrito de compra, el ticket promedio, el total de la transacción, la dirección a la que pidió que se enviaran sus productos y la información de su método de pago, entre otros muchos detalles.

datlas_mx_blog_data_sources_ecommerce

Ahora bien, la cantidad de datos es sin duda impresionante y nos permite realizar análisis más nutritivos, pero es importante cuidar el segundo punto que citábamos arriba: la estructura de los datos. ¿A qué nos referimos con la estructura? Imagina un negocio hace 50 años que tuviera cada transacción anotada en una libreta y tuviera que ponerse a buscar en los miles de libretas de los años pasados para encontrar cuantas veces el Sr. Godínez (su cliente más frecuente) ha comprado en los últimos 3 años. Me canse tan solo de escribirlo. He aquí el segundo punto medular cuando hablamos de datos. Es de suma importancia cuidar que los datos se almacenen con una cierta estructura que permita identificarlos, como el caso del cliente, con un identificador o un folio. Asimismo, es importante cuidar que las estructuras habiliten la conexión entre los datos generados desde distintos procesos o puntos de contacto del negocio con el cliente. Un ejemplo claro en el caso de la tienda en línea para bebes sería tener un catalogo de productos con SKUs y una base de datos de pedidos que integren los distintos SKUs que cada cliente incluye en sus pedidos. Y todo esto ¿para qué? Justo vamos a verlo en los siguientes pasos.

Paso #2: De datos a información (la transformación)

Una vez identificadas las fuentes de datos, sobre todo aquellos generados por el punto de ventas, pasamos a transformar esos datos en información. Cuando hablamos de transformar estos datos nos referimos a tomar la materia prima y comenzar a darle forma, comenzar a construir y descifrar la historia detrás de esos datos para poder derivar la inteligencia. Es justo en esta etapa cuando tomamos, por ejemplo, todos los datos referentes a los clientes y comenzamos a construir los perfiles o avatares. Con los datos de los productos podemos generar canastas, catálogos, familias o categorías y/o agrupaciones. Con los datos transaccionales se pueden generar reportes de resultados e indicadores. Lo importante en esta etapa es poder apalancar la estructura de datos anteriormente establecida para que la transformación de esos datos en información se pueda dar de una manera sistemática y automatizada.

datlas_mx_blog_data_information_ecommerce

Paso #3: Interconectar (integraciones)

Esta etapa se distingue por integrar a la narrativa, a la historia, las diferentes fuentes de información. Retomando el ejemplo de la tienda en línea para bebes y teniendo en cuenta que de la fase anterior obtuvimos perfiles de clientes, catálogos de productos y resultados transaccionales, podemos generar una narrativa completa en esta sección. Imaginemos que de la información anterior seleccionamos uno de los perfiles de cliente formado, ejemplo: Perfil A. Una vez seleccionado el perfil comenzamos a cruzar la información con los catálogos de productos y obtenemos una lectura de los productos más afines al perfil de cliente seleccionado. Todo esto a su vez lo integramos con la información transaccional de tal suerte que podemos construir una narrativa capaz de contar una historia como esta: “El perfil A representa a clientes mujeres de 28 a 34 años, que principalmente llegan desde redes sociales como Instagram, interesadas en productos consumibles como pañales y leche en polvo, generalmente comprando 3 artículos por pedido con un ticket promedio de $890 MXN”

datlas_mx_blog_ecommerce_customer_profile

Ahora bien, lo más importante en este punto no es poder contar la historia sino tomar esa historia para generar las preguntas o hipótesis adecuadas, es decir, tomando la narrativa del ejemplo anterior un buen análisis parte de preguntarse cosas como ¿existe alguna relación entre su edad y la afinidad por productos de marcas de alta gama? ¿Qué tan probable es que este perfil compre artículos que no sean propiamente para su bebe (regalos u obsequios)?

Paso #4: Insights (analíticos)

En esta etapa es importante partir de la definición de este famoso concepto de insights. Si bien es un término en inglés que difícilmente tiene una traducción directa al español, lo claro es que se puede definir como “el entendimiento de una causa específica y su efecto dentro de un contexto particular. Entender la naturaleza interna de las relaciones”. Basados en esta definición, este cuarto paso justo se trata de responder las preguntas planteadas en la etapa 3 y descifrar las causas y efectos de esas relaciones. Retomando el ejemplo anterior, para el caso de la relación entre edad y afinidad de marcas, podemos contarles que este cliente pudo analizar y concluir que las mamás jóvenes son más afines a marcas de alta gama porque su falta de experiencia prioriza la novedad y la mercadotecnia de las marcas de alta gama, mientras que las madres con mayor experiencia ya tienen conocimiento sobre las marcas que realmente son funcionales y priorizan su decisión de compra basadas en los atributos de confianza y usabilidad que otras marcas, no necesariamente de alta gama, les pueden proveer.

datlas_mx_blog_ecommerce_analytics

Paso #5: Inteligencia (accionables)

Después del esfuerzo de las cuatro etapas anteriores llegamos a la parte que realmente impacta los resultados: las acciones. El catalizador de los análisis que las etapas anteriores pudieron proveer llega a su culmen cuando los datos, la información, la historia, las preguntas y las respuestas se convierten en lo que conocemos como inteligencia, es decir, acciones concretas que nos ayuden a influir sobre los resultados que hemos estado analizando. Tomemos el ejemplo citado, una vez que desciframos que hay un perfil de cliente que responde a ciertos atributos podemos generar estrategias de comunicación segmentadas con mensajes afines a ese tipo de características sobre los productos, por otro lado, se pueden apalancar cupones de descuentos que ayuden a aumentar las conversiones en ciertos días de la semana o promociones especiales en los meses más críticos, etc. Con uno de nuestros clientes incluso logramos capitalizar información de entorno para poder identificar geográficamente aquellas zonas en donde se concentraban los clientes potenciales del negocio para poder accionar campañas enfocadas en esas zonas y optimizar los presupuestos promocionales.

En esta etapa es importante recordar dos cosas: la primera es que la inteligencia, como los datos, debe almacenarse de una manera estructurada y debe comunicarse a todos los grupos de interés para que se pueda capitalizar su valor en un impacto positivo a los resultados. La segunda, íntimamente relacionada a esta, es que el proceso es iterativo, es decir, nunca acaba. Al igual que la captura de datos, este proceso debe estar “vivo” debe nutrirse de nuevos datos y continuar abonando a la inteligencia, mejorar los accionables y seguir buscando nuevas fuentes de generación de datos, incluso externas a la empresa, para poder impactar los resultados de manera positiva.

datlas_mx_blog_data_business_intelligence

Finalmente, esta es una forma sencilla en la que puedes obtener valor de los datos de tu negocio. No olvides que a pesar de enumerar 5 sencillos pasos cada uno de ellos tiene una complejidad dentro de si mismo y en Datlas estamos preparados para apoyarte en cada una de las etapas con metodologías y tecnologías que son capaces de adaptarse a cualquier industria y tamaño de negocio. Cuéntanos como estas aprovechando los datos de tus puntos de venta o contáctanos para comenzar a ayudarte ¡hoy mismo!

@DatlasMX

Categorizando las zonas con más choques y siniestros en Nuevo León – Datlas Research

Cuarentena por Coronavirus y Covid-19… y el placer más grande que algunos tuvimos fue la oportunidad de visitar el supermercado, la única salida obligada, con muy poco tráfico vehicular en la ciudad.  Menos tráfico está relacionado con menos probabilidad de choques y siniestros así que nos encontramos con vialidades bastante fluidas.

Datlas_barra_suscribir

Al tener un periodo de más tranquilidad en los flujos y el tránsito social nuevas iniciativas del gobierno y el sector privado han emergido. Por ejemplo,  lanzamientos de ciclovías, arreglar vías principales y carreteras de algunos municipios y ,por qué no, enfocarse mejorar el tránsito en las rutas donde más choques se registran. En esta columna utilizamos históricos de 3 años de choques para Nuevo León para identificar y “categorizar” las zonas de más choques en el Estado. Los ejemplos que veamos son aplicables a nivel nacional y es una propuesta de enfoque de análisis para gobiernos y aseguradoras.

¿Cómo funciona?

El análisis comienza con una base de datos, similar a la que usamos en 3 mitos y realidades de choques en NL, pero enfocado en un registro de choques por ubicación con detalles del tipo y modelos  de vehículos. En tipo, el detalle que tenemos son choques de auto, camión, camión ligero y motocicleta. En modelos tenemos choques de autos desde 1950 hasta el 2019.

Para fines prácticos, generamos 2 variables dicótomas o dummy. Una que señale con 1 cuando el choque haya sido de auto y 0 cualquier otro tipo de vehículo. Segundo una variable en donde si el choque fue por un modelo reciente de auto, entre el 2015 y 2019, y 0 siendo cualquier otro modelo menor o igual al 2014.

¿Cuáles podrían ser los pasos a seguir en un análisis

Para este ejercicio preferimos usar nuestra herramienta de mapas que, de manera más clara que un archivo de excel, nos permite identificar de inmediato el lugar de los hechos. De esa manera podemos construir los siguientes journeys:

1) Enfocarnos en las zonas de alta cantidad

El pase de diapositivas requiere JavaScript.

La base de datos original tiene los choques por coordenada, sin embargo hicimos un trabajo de agregación de datos ubicando el acumulado de choques dentro de una cuadrícula en todo el mapa de Nuevo León. Cada punto representa una geometría con un área de 5km cuadrados en donde ocurrieron los choques. Si visualizamos en un mapa esta información con gráficos de “burbujas” podremos identificar en que zona de la ciudad se han acumulado la mayor cantidad de choques.

33% de los choques en el Estado han ocurrido en 25 kilómetros cuadrados.

Datlas_Covid19_Choques

Datlas_blog_choques_casos_criticos

2) “Categorización” de todos los choques en modelos de auto recientes

El pase de diapositivas requiere JavaScript.

Si quisiéramos enfocarnos en las zonas donde hay más choques acumulados podemos usar la gráfica de puntos de dispersión encima del mapa. Preferimos la geometría tipo cuadros para poder identificar en rojo las zonas de mayor enfoque. Además generamos una variable de proporción de choques de modelos recientes. De esta manera podemos localizar de maneras inmediata los siniestros de casos de 2015 a la fecha.

3) “Categorización” de modelos más siniestrados por regiones

El pase de diapositivas requiere JavaScript.

Finalmente podemos aumentar la resolución convirtiendo la variable modelo en numérica y promediando el año de los vehículos que más han chocado en los últimos 3 años.  En este caso detectando las zonas donde chocan los autos de años más recientes. Sorprendentemente no se percibe que exista una relación entre nivel socieconómico y año de los autos chocados.

Video de navegación

Este tipo de iniciativas y plataformas podrían ser utilizadas por aseguradoras para planificar sus estaciones temporales donde envíen a sus flotillas para que puedan llegar a los choques con menor tiempo. Elevando así el nivel de servicio. Por otro lado podrían mapear cambiar los múltiplos en sus pólizas considerando si las zonas donde transita habitualmente un asegurado son de alto o bajo riesgo de choques.

En el caso de gobiernos, podrían evaluar adecuar señalizaciones de tránsito en las zonas de mayor riesgo así como mantener cerca a oficiales de tránsitos cuando ocurran este tipo de percances.

Datlas_barra_suscribir

Hasta aquí la columna de hoy, gracias por leer y si te interesó no dudes en difundirla con tus contactos y aseguradoras. Te recomendamos también visitar nuestro podcast “Café de Datos”donde estamos publicando semanalmente capítulos donde hablamos de analítica y estrategias de datos.

Saludos

Equipo Datlas

– Keep it weird –

 

 

Sports Analytics: el nuevo MVP (jugador más valioso)

Durante los últimos años hemos estado escribiendo acerca de las distintas aplicaciones que tiene el análisis de datos. Desde los negocios hasta la música, las iniciativas sociales y muchas otras facetas más. En esta ocasión vamos a hablar del nuevo jugador más valioso en los deportes, una de las aplicaciones más populares del análisis de datos en los últimos años, los famosos Sports Analytics o analítica deportiva, es decir, el análisis de datos aplicado en los deportes. También puedes consultar nuestro blog anterior en donde hablamos de algunas aplicaciones y eventos de sports analytics. ¿Qué es? ¿Cuándo empezó todo esto? ¿Realmente que relevancia tiene en los resultados? Y ¿cómo pinta el futuro para esta industria? Es algo en lo que estaremos profundizando el día de hoy. Quédate al final y entérate de una noticia que tiene que ver con Datlas y los Sports Analytics.

free_Suscriber

Para comenzar lo más importante es tener una definición general de ¿qué son los sports analytics? Y es que, como su nombre lo dice, se refiere al análisis de las estadísticas relevantes e históricas buscando generar una ventaja competitiva para un equipo o un deportista en lo individual. A través de la recopilación y el análisis de estos datos, la analítica deportiva provee información a los jugadores, entrenadores y demás personal para facilitar la toma de decisiones antes, durante y después de los eventos deportivos.

Si bien esta es una práctica que ha tenido sus inicios hace más de 10 años, la realidad es que el término como tal de “sports analytics” se volvió famoso en la cultura deportiva después del lanzamiento de la película Moneyball en el 2011. La película está basada en el best-seller de Michael M. Lewis del 2003 “Moneyball: The Art of Winning an Unfair Game” que cuenta la historia acerca de la temporada 2002 de los Oakland Athletics, el equipo de beisbol de Oakland California, donde el Gerente General Billy Beane (interpretado en la película por el actor Brad Pitt) utiliza la analítica deportiva para construir un equipo competitivo con presupuesto mínimo. Si no has visto la película te recomiendo que aproveches esta cuarentena y la pongas en tu lista. Sin ánimos de arruinarte el final (spoiler alert) los resultados que los A´s lograron esa temporada fueron impresionantes. Tan solo al inicio de la temporada se posicionaron 10 juegos por detrás del líder de la división. Tres semanas después ya estaban a solo 4 juegos del primer lugar. Dos meses después el equipo comienza una impresionante racha ganadora que termina con 20 juegos al hilo. Eventualmente los A´s logran conquistar el titulo del oeste, pero pierden la serie mundial frente a Minnesota.

datlas_mx_sports_analytics_moneyball_movie

Aun así, muchos escépticos dirán que el caso de los A´s es uno en un millón y que, estadísticamente hablando, hace falta una mayor muestra para comprobar que el método realmente funciona. Precisamente tras la impresionante historia de Oakland, otros equipos comenzaron a invertir en sports analytics. Algunas franquicias como los Mavericks de Dallas en la NBA, las Águilas de Filadelfia en la NFL y los Boston Red Sox en la MLB son considerados como los equipos más sabios y con más inversión en analítica deportiva. De hecho, los Red Sox, que no ganaban la serie mundial desde que intercambiaron a Babe Ruth a los Yankess de Nueva York en 1918, lograron coronarse en 2004 y 2007 después de integrar analítica deportiva en su toma de decisiones.

Ahora bien, cualquiera de nosotros entiende que el deporte es más que solo el evento deportivo, es decir, que el éxito o fracaso depende tanto de la manera en la que se desempeñan durante el partido, pero también la forma en la que se preparan previamente y la forma en la que aprenden posteriormente al partido. De esta forma hablaremos de los 2 aspectos claves de la analítica deportiva: el análisis en campo y el análisis fuera del campo.

datlas_mx_sports_analytics_nfl

Por un lado, la analítica en el campo se enfoca en mejorar el rendimiento de los equipos y jugadores en el terreno de juego. Profundiza en aspectos como las tácticas de juego y la aptitud del jugador. Un ejemplo claro de este tipo de analítica es el de la selección de futbol alemana que en 2014 dejó al mundo enmudecido después de propinarle a Brasil una de las derrotas históricas más humillantes en la historia del futbol al ganarle 7-1 durante la semifinal de la Copa Mundial que ese año se disputaba precisamente en Brasil. ¿Cuál fue el secreto de Alemania? Mientras otros equipos tenían a un analista de video y desempeño, la selección alemana usó un software de analytics llamado Match Insights que convertía el video de 8 cámaras alrededor del campo en indicadores claves de desempeño como velocidad de los pases, promedio de posesión de balón, velocidad y distancia recorrida, posicionamiento y numero de toques al balón. Todos estos datos fueron habilitados al equipo directivo, entrenadores y hasta los jugadores a través de una aplicación móvil. Los movimientos de sus oponentes se convirtieron en personas, simulaciones y gráficas, lo que hizo que la aplicación fuera tan fácil e intuitiva como un video juego. La cantidad de información analizada fue enorme, el mismo gerente de la selección mencionó que 10 jugadores pueden producir 7 millones de datos en tan solo 10 minutos. Pero si crees que el análisis de datos que uso Alemania se limito a los partidos de la Copa Mundial, te quedaste corto, porque esta gran hazaña comenzó 2 años antes de la Copa del Mundo cuando estudiantes de la Universidad Deportiva de Cologne Alemania extrajeron datos de numerosos videos acerca del acerrimo rival de Alemania en aquella semifinal, descifrando patrones que reportaron ser una pieza clave en la preparación del equipo para esa Copa Mundial. La habilidad de Alemania para desmantelar la defensa de Brasil fue extraordinaria.

datlas_mx_sports_analytics_germany_brazil_7_1_world_cup_2014

Por otro lado, tenemos la analítica fuera del campo que se ocupa del lado comercial de los deportes. Esta enfocada en ayudar a una organización deportiva a través de datos que ayuden a aumentar las ventas de boletos y mercancías, mejorar la participación de los fanáticos, etc. El objetivo final es el crecimiento y aumentar la rentabilidad. Un ejemplo de este tipo de analítica es el más reciente lanzamiento de los Vaqueros de Dallas titulado “Pose with de Pros” (posa con los profesionales). Tras un extenso análisis de datos acerca de los aficionados y su experiencia dentro del estadio, la franquicia y AT&T unieron esfuerzos para crear, desarrollar y ejecutar una aplicación de realidad aumentada que permite a los fanáticos tomarse una fotografía con sus jugadores favoritos. Localizados dentro del estadio estos kioscos te permiten no solo tener tu selfie sino compartirla vía redes sociales gracias a la tecnología 5G habilitada por AT&T.

datlas_mx_sports_analytics_dallas_selfie_pros_stadium_at&t

Finalmente, hemos de reconocer que el análisis de datos se ha vuelto uno de los prospectos a convertirse en el nuevo jugador más valioso del deporte. Frente a un panorama de incertidumbre como la pandemia del COVID-19 incluso en los e-sports la analítica ha tenido un rol cada vez más relevante. Si te gustan los deportes, los datos o incluso ambos, esta es un área de oportunidad enorme para que puedas realizar tu vida profesional. De hecho, nos complace anunciarles qu en el siguiente episodio de nuestro podcast Café de Datos tendremos un invitado especial que se dedica a inteligencia deportiva con uno de los clubes más ganadores de la última década y con el que estaremos platicando acerca de Sports Analytics, como se vive en México, las grandes tendencias y formas en las que está revolucionando el deporte a nivel mundial. Si esta columna se te hizo interesante, espera a escuchar este próximo episodio que será mucho mejor.

Caso_Blog_Podcast_E1_FF

Sin más, nos leemos en la próxima entrada. No dejes de compartirnos tu opinión en nuestras redes sociales.

@DatlasMX

Análisis de mercado con Inteligencia Artificial

Esta mañana tuvimos la oportunidad de realizar un Webinar Gratuito acerca de como estamos usando inteligencia artificial para realizar análisis de mercado de una forma ágil y sencilla aprovechando la gran cantidad de información disponible. Presentamos a Laura, nuestra asistente virtual. Si no tuviste oportunidad de asistir ¡no te preocupes! en esta columna te vamos a contar un poco de lo que estuvimos viendo. Si te interesa aprovechar nuestros Webinars gratis no olvides suscribirte en nuestra página web.

free_Suscriber

En primer lugar, comenzamos por definir el concepto de inteligencia artificial (I.A.). Sin duda no es un termino ajeno hoy en día, sino al contrario, se ha puesto tan de moda que muchas personas lo han escuchado, pero pocos saben con exactitud que es a lo que se refiere. La definición de Bill Bulko es una de nuestras favoritas: “La inteligencia artificial es el arte de hacer que las computadoras se comporten como aquellas que vemos en las películas”. Sin duda no es una definición académica, pero se acerca mucho a la realidad, sobre todo en años recientes donde hemos visto numerosas películas que tratan este tema. La realidad es que una definición más científica define la inteligencia artificial como un “programa de computación diseñado para realizar determinadas operaciones que se consideran propias de la inteligencia humana, como el autoaprendizaje”

datlas_mx_webinar_laura_IA

Ahora bien, la inteligencia artificial no es algo que haya nacido ayer, como dicen. Este tipo de programas computacionales tuvo sus inicios en los años 50´s con el famoso Alan Turing y su test para identificar si una computadora es capaz de “pensar como un ser humano”. Lo que también es verdad es que en la época de Alan Turing el término inteligencia artificial no existía siquiera, fue hasta 1956 que John McCarthy acuña el término y se comienza a utilizar. A lo largo de estos más de 60 años esta tecnología ha evolucionado desde los primeros chatbot, robots, hasta IBM Deep Blue que logró vencer al campeón de ajedrez. Esto nos lleva a otro punto importante, dentro de la inteligencia artificial existen distintos tipos o subgrupos dentro de los que destacan precisamente la robótica, los sistemas expertos, el procesamiento de lenguaje natural, visión computacional y machine learning. En este caso nosotros nos enfocamos en este último subgrupo mencionado: machine learning, que en su definición simple se entiende como “el estudio de los algoritmos computacionales que mejoran a través de la experiencia”

datlas_mx_webinar_laura_machine_learning

Después de esa rápida introducción al tema de inteligencia artificial es momento de platicar un poco del proceso que se lleva a cabo para poder generar este algoritmo que nos ayuda finalmente a realizar los análisis de mercado de forma automática. Para ello nosotros hemos personalizado y adaptado la técnica académica de CRISP-DM a la metodología Datlas y la hemos bautizado como Laboratorio de Datos. Este proceso consta de 6 actividades claves:

  • Extracción
  • Integración
  • Clasificación
  • Visualización
  • Entrenamiento
  • Reporteo

datlas_mx_webinar_laura_crisp_dm

Durante la primera fase del proceso lo que hacemos es todo el trabajo de minería de datos, es decir, nos conectamos a las diversas fuentes de información abierta, públicas, privadas y, de ser necesario, integramos también datos internos del cliente.

Pasando a la segunda etapa de integración, lo que sucede es que aquellas diversas fuentes de información y datos que ya tenemos se organizan y se “traducen” para lograr homologarlos bajo un mismo “idioma” que en nuestro caso es el componente geográfico o la georreferencia como le llaman técnicamente.

Enseguida viene la parte de clasificación, que muchas veces es uno de los pasos más subvaluados pero es de los más importantes porque es en esta parte en donde pasamos de los simples datos y de la información a la preparación de la interfaz de usuario, al diseño centrado en el consumidor final. La clasificación nos sirve para poder entregar datos a nivel agregado o a nivel granular dependiendo de su relevancia, por ejemplo: si tenemos datos de los check-ins en redes sociales, en esta fase es donde decidimos mostrarlos a través de mapas de calor clasificados por tipo de actividad, en vez de mostrarlos quizá como una masa de puntos individuales dentro de una geografía.

Una vez clasificado todo, pasamos a la parte del cifrado visual en donde elegimos las distintas maneras de presentar la información y se termina de gestar todo ese diseño que se planeo en la parte de clasificación.

Finalmente llegamos al penúltimo paso que es el de entrenar el algoritmo. En este punto es importante entender que cuando hablamos de inteligencia artificial hay distintos tipos de entrenamiento que se pueden ejercer sobre un algoritmo de este estilo. En general se clasifican de dos formas: entrenamiento supervisado y entrenamiento no supervisado.

datlas_mx_webinar_laura_entrenamiento_IA

Cuando hablamos de entrenamiento supervisado estamos básicamente hablando de tomar el set de datos que tenemos, extraer una muestra del 80%, por ejemplo, indicarle a la máquina cual es la variable de respuesta o lo que quiero calcular, estimar o predecir y pedirle que ajuste un modelo con esas variables. A partir de esto se usa el 20% restante de los datos para probar su asertividad del modelo y se realizan ajustes iterando esta práctica. Por otro lado, el aprendizaje no supervisado es aquel que permite a la maquina “deducir” o aprender a partir de un set de datos sin decirle exactamente que variable de respuesta esperamos o que tipo de ejercicio se quiere realizar. Para ponerlo en perspectiva, en 2016 Microsoft utilizó un entrenamiento no supervisado para generar su chatbot Tray y lo puso a aprender por si solo en base a las conversaciones e información de redes sociales. Este tipo de experimento resulto un tanto controversial ya que Tray se volvió racista y extremista debido a la exposición que tuvo a gran cumulo de datos e información de esta índole. En nuestro caso claramente, por el contexto de negocios utilizamos un aprendizaje supervisado.

free_Suscriber

Finalmente terminamos la sesión platicando acerca de un caso aplicado que tuvimos con un cliente en Nuevo León que nos planteó el reto de analizar una ubicación en el centro de Monterrey para descifrar cual podría ser el tipo de negocio ideal que pudiera posicionar en esa ubicación que pudiera estar generando un cierto monto de ganancias mensuales. Sorprendentemente cuando Laura realizó el análisis de entorno descubrió que dentro de la dinámica de la zona había un hospital que básicamente fungía como el generador de tráfico más fuerte y que había hecho que la zona tomara una vocación distinta en los últimos años. A partir de este hallazgo Laura fue a realizar un análisis de entorno de los principales hospitales públicos y privados de Nuevo León para derivar un top 10 de negocios que habitualmente se sitúan alrededor de un hospital y contrastarlo contra el entorno que estaba analizando para identificar aquellos tipos de negocios que tuvieran oportunidad de posicionarse en la ubicación definida por el cliente.

De esta forma logramos entregar al cliente 3 opciones de negocio con un cierto nivel de potencial económico que cumplía las restricciones citadas originalmente y ayudarlo a tomar la mejor decisión a través del uso de tecnología y apalancados en la gran cantidad de datos e información disponible actualmente. Si quieres conocer un poco más acerca de esta experiencia te invitamos a ver el video de testimonio de nuestro cliente

datlas_mx_webinar_laura_testimonio_barras_cardan

Finalmente te invitamos a mantenerte en contacto para recibir noticias de los siguientes Webinars y muchas sorpresas más que tendremos para ti. Hasta la próxima.

@DatlasMX

¿Cómo analizar a la competencia usando mapas? – Datlas Casos de Uso

Una de las claves del éxito de los negocios es la ubicación, como ya hemos hablado, pero para ubicar un negocio hay ciertos aspectos que la mayoría de las empresas, sin importar su giro o sector, toman en cuenta para realizar un análisis y seleccionar el mejor punto. Algunas de estas variables son:

  1. El producto/servicio que a vender (giro/sector)
  2. Competencia (directa, indirecta, sustitutos etc.)
  3. Mercado meta ideal (perfil del consumidor)
  4. Características de la ubicación y el entorno (historia, estructura, demografía, tráfico, accesibilidad, estacionamiento, etc.)
  5. Negocios en la zona (complementadores, etc.)
  6. Aspectos legales (uso de suelo, reglamentación, lineamientos, etc.)
  7. Aspectos financieros (costos, gastos, mantenimientos, etc.)

free_Suscriber

Sin duda algunos de estos puntos, en un inicio, los define el emprendedor/empresario como, por ejemplo: el mercado meta ideal o perfil del consumidor. Mientras que otros provienen de un análisis de mercado y entorno respecto a la ubicación analizada. En esta entrada nos vamos a enfocar en el análisis de competencia a través de nuestras plataformas de Mapas.

Para ello vamos a utilizar el caso de Andrea, una joven emprendedora con un concepto de gimnasio que mezclaba la parte tradicional de las maquinas y las pesas con toda esta tendencia del baile y las nuevas metodologías fitness. Andrea estaba por abrir su segunda sucursal en Nuevo León. Reconociendo que este mercado estaba teniendo un auge y que los competidores nacían de forma rápida y con facilidad, decidió enfocarse en analizar a la competencia alrededor de esta nueva oportunidad de ubicación. Así que ¿Cómo lo hizo?

En primer lugar Andrea entró al Marketplace de Datlas y adquirió su Mapa Premium para Nuevo León.

Quédate hasta el final y descubre el código de descuento para adquirir hoy mismo tu Mapa Premium para cualquiera de las geografías disponibles

datlas_mx_marketplace_mapa_premium

Una vez adquirido su mapa, entró directamente en la página web de Datlas (www.datlas.mx) y se autentificó como usuaria.

El pase de diapositivas requiere JavaScript.

Una vez dentro de su panel personalizado, se fue a la sección de Mapas y selecciono su Mapa Premium para Nuevo León.

datlas_mx_panel_personalizado

Una vez dentro del mapa, utilizo la barra de búsqueda por dirección para localizar la ubicación que estaba evaluando.

El pase de diapositivas requiere JavaScript.

En cuanto localizó la ubicación, Andrea hizo uso de una herramienta llamada “Consulta Establecimiento” que se encuentra justo en la cuarta posición de la barra lateral derecha, debajo de la herramienta de búsqueda específica y justo arriba de la herramienta de medición de distancia.

free_Suscriber

Haciendo uso de esta herramienta Andrea, y todos nuestros usuarios, pueden escribir una palabra clave, en este caso, por ejemplo: gimnasio y el sistema realiza una búsqueda de esa palabra clave en las bases de datos de negocios para obtener como resultado todos aquellos establecimientos que tengan esta palabra dentro de su nombre comercial y/o de su razón social.

En este caso, Andrea al poner gimnasio, obtuvo estos resultados:

El pase de diapositivas requiere JavaScript.

De igual forma, se pueden hacer consultas con palabras claves parecidas como, en este caso, “gym” y obtener también resultados:

datlas_mx_mapa_premium_nl_consulta_gym

De esta forma, Andrea pudo observar rápidamente el nivel de competencia que existía en el entorno y combinar las distintas herramientas de las que hemos estado hablando en entradas anteriores para complementar su análisis con una segmentación y prospección de cliente.

Finalmente, no olvides que tu también puedes empezar a analizar a tu competencia hoy mismo adquiriendo tu Mapa Premium para cualquiera de nuestras geografías disponibles, aprovecha el cupón BLOG50 para obtener un 50% de descuento (válido por tiempo limitado).

¡Visita nuestro Martketplace y aprovecha esta gran promoción!

 

También te invitamos a contarnos ¿qué reto enfrenta tu negocio actualmente? para poder sugerirte y escribir algunas formas de solución con nuestras plataformas. Escríbenos a ventas@datlas.mx o en nuestras redes sociales.

@DatlasMX

 

 

Inteligencia artificial y big data para combatir el coronavirus (COVID-19)

El día de ayer la Organización Mundial de la Salud (OMS) declaró como pandemia el coronavirus o COVID-19, por su nombre oficial. ¿Qué significa esto? Una enfermedad entra en la categoría de pandemia cuando cumple cualquiera de las siguientes condiciones: se extiende a muchos países o ataca a casi todos los individuos de una localidad o región. En este caso, la propagación que ha tenido este virus desde el continente asiático hasta Europa y América le ha conferido la categoría de pandemia. Ahora bien, los coronavirus son una extensa familia de virus que pueden causar enfermedades tanto en animales como en humanos. En los humanos, se sabe que varios coronavirus causan infecciones respiratorias que pueden ir desde el resfriado común hasta enfermedades más graves como el síndrome respiratorio de Oriente Medio (MERS) y el síndrome respiratorio agudo severo (SRAS). La COVID-19 es la enfermedad infecciosa causada por el coronavirus que se ha descubierto más recientemente. Tanto el nuevo virus como la enfermedad eran desconocidos antes de que estallara el brote en Wuhan (China) en diciembre de 2019. Si bien esta no es una nota médica te invitamos a consultar los síntomas, las maneras de prevenir y protegerte de este virus en el sitio oficial de la Organización Mundial de la Salud (WHO, por sus siglas en inglés).

free_Suscriber

Sin duda la industria de la salud no ha sido exenta de vivir y beneficiarse de la reciente transformación digital y la innovación tecnológica. Para este caso puntual del coronavirus queremos destacar el papel que han tenido el big data y la inteligencia artificial en la lucha, prevención y reacción ante esta pandemia. En cuanto se confirmó el brote en Wuhan el gobierno chino comenzó a desplegar una estrategia de prevención y control basado en los sistemas de inteligencia y la tecnología que tanto han distinguido al país en las últimas décadas, así como apalancado en su sistema de gobierno que, para muchos expertos, en este caso fue bastante útil y eficaz para la capacidad de reacción que tuvo el país.

datlas_china_coronavirus_covid-19_2020

Por si no lo sabías, el gobierno de China ha instalado un sistema masivo de vigilancia para sus ciudadanos que va desde cámaras hasta una intervención directa en smartphones, rastreo de operaciones financieras y ubicación en tiempo real. Fue así como el gigante asiático comenzó a luchar contra el COVID-19. Lo primero en llegar fueron las cámaras térmicas. Como salido de una película de guerra o de invasión alienígena, empezaron a utilizar las cámaras para detectar la temperatura térmica de las personas, ya que uno de los principales síntomas del COVID-19 es el alza en la temperatura. Mediante inteligencia artificial, aún vigilan la temperatura corporal de los ciudadanos.

datlas_china_coronavirus_covid-19_camaras_termicas

El siguiente gran paso fue desarrollar aplicaciones para los smartphones que, utilizando un esquema de semáforo clasifican a los ciudadanos hasta condicionarles qué hacer y con quién relacionarse. En esta iniciativa destacaba la cooperación del gigante del comercio online Alibaba, que contribuyó a desarrollarla. La aplicación era capaz de identificar a las personas según tres colores: el verde, para quien puede moverse con libertad; el amarillo, para quien había estado en una zona con peligro de infección (razón por la que debía permanecer siete días en cuarentena); y el rojo para quien hubiera estado en contacto con zonas de alta afectación del COVID-19 (lo que obliga a permanecer catorce días en cuarentena).

Pero esta innovación, sin embargo, no fue la última. Porque si el semáforo móvil clasificaba a los ciudadanos de cara a su control peatonal en la calle, hubo una aplicación posterior que profundizó aún más. Y es que el gobierno y la Corporación de Tecnología Electrónica de China, respaldados por datos de las autoridades de salud y transporte –según publicó la agencia estatal Xinhua–, desarrolló una segunda app para permitir rastrear a las personas y alertar sobre si han tenido un “contacto cercano con alguien infectado”. Una aplicación que explotaba el big data en manos del gobierno, y que es accesible apenas con escanear un código QR en las populares plataformas chinas WeChat o Alipay. El único requisito es enviar el nombre, el número de teléfono y el número de identificación y, tras cruzar los diferentes datos a los que tiene acceso, ya puede advertir si se camina por un lugar con peligro de ser infectado, o si se ha viajado cerca de personas infectadas, también si se trata de miembros de la familia o de pasajeros y tripulación de un mismo tren o avión. Es más, incluso permite buscar números de identificación diferentes, y saber si son un riesgo de salud.

free_Suscriber

Sin duda alguna, estas últimas medidas pueden ser controversiales ya que son obligatorias en algunas ciudades chinas mientras que en otras están disponibles a voluntad. Lo que no se puede negar es que estas medidas han sido eficaces en el corto plazo, pero presentan un riesgo muy delicado. “La extrapolación de estas apps de control sanitario al incipiente sistema de crédito social puede provocar, además, que algunos colectivos sean marginados y aislados socialmente. Y ello se añade a un sistema masivo de vigilancia que, en base a lo detectado por cámaras, permite o no acceder a determinados medios de transporte, o tener prioridad en los servicios”, explica Antoni Gutiérrez-Rubí, experto en tecnología y política. Lo que se añade a la conocida opacidad informativa del gobierno de China sobre su alcance.

Finalmente, debemos estar atentos al desarrollo de esta pandemia, tomar en cuenta las medidas precautorias y seguir atentos a la forma en la que podemos adoptar algunas de estas tecnologías en favor no solo de la detección de posible infección sino en la cura definitiva de la misma.

Compártenos tu opinión y mantente atento a noticias como estas en nuestras redes sociales

@DatlasMX