Archivo de la etiqueta: comercio en linea

A/B Testing y métodos de experimentación en aplicaciones comerciales – Datlas Research

En recientes columnas hemos estado introduciendo métodos de negocios que han sido alterados por la analítica de datos. Tales como: Go-To-Market, Digitalización de anaqueles en E-commerce, Clustering para Segmentos de cliente y en esta ocasión queremos darle apertura al A/B Testing (Experimentación A/B).

A/B Testing es un método de experimentación que se puede utilizar en aplicaciones comerciales como promociones, programas de lealtad y descuentos. Este tipo de pruebas se conocen en otras ciencias como prueba aleatoria de control y es una herramienta poderosa para desarrollo de productos, iniciativas comerciales o de marketing.

Datlas_barra_suscribir

Esta columna te va a interesar si eres alguien que activamente está buscando validar si una campaña comercial o de marketing tiene éxito o no.

DatlaS_ab-testing

Definición de A/B Testing

Es una herramienta útil para estimar el ROI (retorno sobre inversión) así como proveernos de un panorama de causalidad que nos ayude a justificar si un proyecto debe o no debe ser escalado dado los resultados de ciertas pruebas de hipótesis.

Normalmente contrastamos la conducta entre 2 tipos de grupos con características similares: Grupo de control y grupo de tratamiento. En realidad pueden ser más, pero el punto es tener grupos a los que se les aplica distintos tratamientos que son contrastantes entre sí. Por ejemplo,en un experimento para bajar de peso, al grupo A ( De control) se le controló su dieta y al grupo B (De tratamiento) además de su dieta se le aplicó una rutina de ejercicios. Al final, si el grupo B tuvo un resultado más cercano al objetivo de bajar de peso podríamos concluir que el tratamiento aplicado al grupo B es más exitoso que el del grupo A.

Errores comunes a considerar

Siguiendo con el ejemplo los datos se podrían ver de esta manera

Datlas_blog_ABTesting

Con la mano en la cintura vamos a reportar que los tratamientos al grupo B hacen que bajes más kilos. Pero… un momento ¿Pudieran existir errores si concluimos algo así?

  • Error Tipo 1 – Conclusión fallida donde decimos que la intervención fue exitosa, cuando en realidad no lo fue.  Erróneamente asociamos el plan de alimentación como factor causal cuando algunos integrantes bajaron de peso porque, por ejemplo, su tipo de ejercicio en esa hora fue funcional o HIT mientras otros integrantes sólo caminaban. A esto se le llama también falsos positivos.
  • Error tipo 2 – Falsamente concluir que la intervención fue no exitosa.  A algunos miembros el plan de alimentación no les funcionó. Pero hay factores externos como el tipo de aceites que usan en la preparación o las bebidas que toman para poder llegar a una conclusión completa.

Estos errores van a suceder cuando queremos sacar conclusiones para toda una población a partir de una muestra. Sólo hasta que entendemos el verdadero dimensionamiento de nuestros resultados deberíamos de estar tomando decisiones de impacto de negocio.

Ejemplo de casos de uso

  • Campañas de marketing por correo o mensajes de texto (SMS)
  • Programas de lealtad optimizando las promociones para lograr mayor redención
  • Medicina para entender si funciona o no una prueba
  • E-commerce para saber si algún cambio al aparador digital generaría mayor compra

Caso de estudio

El orden será primero establecer un ejercicio hipótesis acompañado de su diseño de experimento. Después trabajaremos en métodos aleatorios para generar muestras, justificar tamaños de muestras y finalmente seleccionar un método de mejoras.

 

Datlas_blog_abtesting_Exitoso_fracaso

Como otros problemas de negocios, este proceso inicia generando hipótesis considerando la población de estudio, la intervención a realizar, los indicadores para comparar entre grupos, el resultado de lo que estás midiendo y la selección del tiempo en el que se va a realizar la medición. Por sus siglas en inglés PICOT (Population, Intervention, comparison, outcome, time).

Por ejemplo, si tenemos un sitio de e-commerce donde queremos experimentar para lograr mayor conversión (visitantes que terminando comprando en el sitio)  generando cambios la visualización de nuestro “anaquel virtual”. Para esto activaremos 2 anaqueles, el actual y el nuevo.  La hipótesis nula (H0) sería que las personas que vean el nuevo aparador virtual en nuestro sitio de e-commerce no tendrán mayor conversión comparados con los que vean el aparador actual. Por otro lado la hipótesis alternativa (H1) establece que los visitantes al sitio de e-commerce que vean el nuevo anaquel tendrán tasas de conversión más alta que  quienes vean el aparador actual.

Una vez concluido el ejercicio de formular hipótesis pasamos a generar muestras aleatorias. Buscaremos que las muestras sean balanceadas, donde ningún segmento este sobre-representado (usuarios que entran de móvil vs. usuarios que entran desde ordenador de escritorio).  Después será estimar el tamaño correcto de los grupos. Existen distintos métodos estadísticos para el cumplimiento de estas pruebas que puedes revisar como clustering, ICT o aplicar random a variables en R o Python. Claro, después de esto se recomienda validar que las distribuciones sean normales para comprobar aleatoriedad.

Finalmente la etapa más crítica será la de medición. Donde desde muchos ángulos tendremos que pensar bajo qué criterios evaluar el experimento. Considerar todas las excepciones o pormenores. En seguimiento al ejemplo del e-commerce: Grupos de edad relacionadas a la conversión, medios de pago, tiempos de entrega, entre otros para verdaderamente concluir el caso de éxito

Conclusión

Normalmente cuando concluimos accionables sólo con información descriptiva nos vemos limitados para llegar a conclusiones globales. En el negocio, a veces le invertimos a una prueba 3 semanas para una decisión que podría tener impacto sobre más de $1M o la existencia misma del negocio. Seguir los pasos del método de A/B testing te ayudará para reportar si una iniciativa es o no exitosa. Te recomendamos asesorarte con expertos para manejar adecuadamente los datos y sobre todo generar métricas que puedan abrir la conversación de cómo mejorar las iniciativas. Y así, finalmente, poder calcular un valor como retorno de inversión con una consideración de errores robusta.

Platica con nosotros y contáctanos en ventas@datlas.mx o en nuestro sitio web mediante el marketplace: https://www.datlas.mx/marketplace/

Fuentes:

Un plan para iniciar en E-commerce en tiempos de cuarentena (E-commerce, Podcasts, entre otros) – Datlas Research

Otra semana más de cuarentena, pensamos que podemos demorar un mes en que todo el tema de distanciamiento social nos juegue. O dos, o tres. Mientras tanto las reglas del libre mercado y oferta-demanda comienzan a cobrar más fuerza. Los denominados “brick – mortars” y las marcas de modas han quedado perplejas ante el efecto dominó de la pandemia en sus estados financieros. Primero las contracciones en las bolsas de valores, luego las empresas, los empleos y finalmente las carteras y el abasto familiar de las personas. Pero ¿Esta es la realidad de todas las industrias? ¿Hay excepciones? ¿Habrá un canal más adecuado?

Datlas_barra_suscribir

En la nueva economía que nos espera probablemente se cumplan los principios de “Darwin”, nos referimos a la selección natural. Si vinculamos esta lógica al efecto de la pandemia en la economía podemos poner atención en la importancia que están tomando los canales digitales, la cantidad de emprendedores y empresas que hoy, con urgencia, quieren sumarse a un canal digital y los cambios de hábito en el nuevo consumidor.

Datlas_QueApuro_TransformacionDigital
¿Quién lideró la transformación digital en tu compañía?                                             A) Director(a) General ; B) Director(a) de Tecnologías; C) COVID-19

En esta columna  hablaremos sobre cómo los canales digitales, particularmente en “e-commerce” se han destacado entre otros canales de venta por la casi carente necesidad de interacción social en sus transacciones. Daremos algunas ideas para tomarte más enserio los negocios en línea y cómo el análisis de datos te puede ayudar a llegar a las metas de forma más rápida.

Destacados

A continuación, inspirados en el reporte de Stackline que contrasta la variación de categorías transaccionadas por canales “e-commerce” de Marzo 2020 contra Marzo 2019 presentamos algunos resultados interesantes.

A continuación el nombre de la categoría acompañada de la cifra de variación en %.

Top 20 de categorías con más crecimientos durante COVID-19

  1. Guantes desechables +670%
  2. Máquinas de Pan +652%
  3. Medicionas para la tos o resfríado +535%
  4. Sopas +397%
  5. Granos y arroz seco +386%
  6. Comida empacada +377%
  7. Copas de frutas +326%
  8. Equipo para entrenamiento (pesas) +307%
  9. Leche y crema +279%
  10. Insumos de limpieza para trastes +275%
  11. Toallas de papel +264%
  12. Jabón de manos y sanitizador + 262%
  13. Pasta +249%
  14. Vegetales +238%
  15. Harina +238%
  16. Toallas faciales +235%
  17. Medicina para alergias +232%
  18. Salud para la mujer +215%
  19. Cereal +214%
  20. Generadores de poder +210%

Top 20 de categorías con mayor caída durante COVID19

  1. Maletas y equipaje -77%
  2. Maletines -77%
  3. Cámaras -64%
  4. Trajes de baño para hombres -64%
  5. Ropa de novia -63%
  6. Ropa formal de hombres -62%
  7. Trajes de baño para mujeres -59%
  8. Playeras de neopreno para agua -59%
  9. Zapatos atléticos para hombre -59%
  10. Bolsas de gimnasio -57%
  11. Mochilas -56%
  12. Equipo de buceo -56%
  13. Trajes de baño para niñas -55%
  14. Equipamiento para béisbol -55%
  15. Artículos para fiestas y reuniones -55%
  16. Equipo de protección para motociclismo -55%
  17. Bolsas para cámaras -54%
  18. Vestidos y trajes para dama -53%
  19. Botas para mujer -51%
  20. Bastidores de carga para autos -51%

Más ejemplos del reporte completo de Stackline:

El pase de diapositivas requiere JavaScript.

Atributos importantes

No sólo se trata de arrancar una tienda porque conozco a X o Y persona que me puede proveer a buen precio cierto producto. Al menos hay que dedicarle un par de días a la ideación y sobre todo a las selecciones técnicas.

¿Me conviene más subirme a un canal existente o crear el mío?

La respuesta es depende. Si tienes una marca con reconocimiento local o nacional vale la pena hacer tu propia apuesta. Una marca de juguetes muy conocida en Estados Unidos “Toys R Us” tomó la decisión de depender de Amazon como su canal principal digital. Durante un tiempo tenían ciertas primicias y exclusividades para algunas categorías. Conforme Amazon subió su dominio en la arena comercial, tanto físico y digital, fueron integrando competidores y proveedores directos de juguetes. De pronto Toys R Us cayó en ventas en canales digitales y hace un par de meses quebró. Hay que tomar en cuenta que una marca puede diversificar su presencia digital, por lo tanto tendrá que planear qué reglas define en canales físicos, en canales digitales y en canales de terceros.

El pase de diapositivas requiere JavaScript.

Por otro lado si eres un nuevo entrante es recomendable sumarte a canales como Mercado Libre, Amazon, Ebay, Linio, entre otros que podrán educarte un poco en la dinámica del negocio en línea, conectarte con pasarelas de pagos importantes así como protegerte de los contracargos.

¿Cuál plataforma es la indicada para iniciar si quiero hacerlo por mi cuenta?

El pase de diapositivas requiere JavaScript.

Hay que entender que hay distintos roles en el e-commerce. Hay jugadores que solamente juegan en la arena digital. Algunos híbridos, es decir, lo que catalogues en lo digital tiene potencial de que termine en un anaquel físico. Otros preparados para exportar, otro responsables de la logística e inventarios. En toda esta mezcla la recomendación sería atender los puntos de la venta que más están en tu control y con base a esto escoger la plataforma.

  • Adquirir insumos o productos a bajo precio (En tu control)
  • Importarlos o prepararlos para revender (Usa terceros)
  • Preciar, catalogar y promocionar en canales digitales (En tu control)
  • Entregas y logística (Usa terceros)
  • Atención al cliente (En tu control)
  • Reseñas y calificaciones (Usa terceros)
  • Devoluciones (Usa terceros)
  • Pasarelas de pagos y protección de contracargos (Usa terceros)

Con una ecuación como esta podrías tener el potencial de vender productos marginando cerca de 50%-60% dependiendo la capacidad de descuento por volumen que obtengas. Si te gusta esta propuesta de valor te resultará interesante explorar plataformas como: Ecwid, Shopify y/o Magento.

Datlas_barra_suscribir

Y la analítica ¿Dónde? ¿Cuándo?

Una tienda física tiene más de 14 puntos de recolección de datos. Estos postulados los hacemos en nuestras conferencias tratando de sensibilizar a las y los dueños de negocios acerca de como pueden capitalizar datos. En el mundo virtual hay una infinidad de puntos dependiendo las herramientas que utilices. Algunos journeys son:

  • Análisis de datos para seleccionar las categorías que conviene vender. Te recomendamos revisar la página https://camelcamelcamel.com/
  • Análisis de facebook ads y promocionales en tus publicaciones para ver qué segmento de audiencia tiene más enganche con tus post
  • Google analytics cuando nuestro cliente visita la página web podemos conocer su demografía, gustos, preferencias, comportamiento en el sitio web y desarrollar mejoras
  • En el catálogo de los productos que ofreces, podrías monitorear en tu plataforma como shopify o ecwid qué precios son los que mejor tracción tienen en tus productos
  • En el momento de entrega ¿Qué proveedor de logística tarda menos? ¿Cuál te cobra menos?
  • Entre otros…

Te invitamos a conocer nuestro caso de análisis de e-commerce en este vínculo:

Reflexión final

Durante el resto del año, tal como lo hemos comentado en nuestros webinars, continuará siendo una temporada dura en el sentido económico. Hay que continuar buscando nuevas tácticas para mantener a flote nuestros negocios y nuevas líneas de ingreso. El e-commerce es una buena opción, tomará un tiempo en aprender, pero una vez dominado sin lugar a duda será una habilidad digital que te servirá toda la vida.

Por nuestra parte, desde Datlas, recuerda que estamos aqui para aportarle ese granito de arena con la analítica para que tus operaciones sean eficientes, detectes y reacciones rápidamente a nuevas líneas de ingreso y no pierdas dinero en el intento.

Hasta aqui la columna de hoy, te invitamos a escuchar nuestro podcast “Café de datos” para continuar aprendiendo de analítica. Recuerda compartir y difundir este blog con tus colegas que seguramente han tenido ganas de abrir una tienda, pero no se han atrevido.

Equipo Datlas

-Keep it weird –