Archivo de la etiqueta: como aprender ciencia de datos

Aprender ciencia de datos y big data – 3 apuntes para empezar YA – Datlas manuales

El año pasado en nuestro blog “¿Cómo aprender ciencia de datos?” compartíamos distintos puntos prácticos para empezar a rodearse de círculos y proyectos de analítica donde cualquier usuario interesado podría atender.

En un par de meses la diversidad de puntos de aprendizaje se ha incrementado. Desde podcast, como “Café de Datos”, hasta cursos en línea de todo tipo de nicho dentro de analítica. Pero el día de hoy en esta columna queremos compartir 3 recursos de utilizad que no te puedes perder si quieres aprender de ciencia de datos este 2020-2021.

Apunte 1) Sigue grupos relacionados a Data Science (ciencia de datos) en Facebook y Linkedin

*Data Science – R & Python

*Data Science

*Data Science Beginners (Para principiantes)

*Machine Learning and Data Science

*Data Science Central

En español:

*Data Science Monterrey

*Ciencia de datos con R

¿Donde aprender ciencia de datos o big data? Desde tu escritorio. Estos grupos en redes sociales en realidad son comunidades de aprendizaje. Personas como tú, que en algún momento quisieron incrementar su acervo en Data Science y han encontrado algunos atajos en su camino que quieren compartir.

Si decides entrar a estos grupos y eres aceptad@. Recuerda que lo importante es: Cumplir con las reglas de las comunidades, aportar conocimiento, preguntar y generar diálogo.

Apunte 2) Sigue cuentas de líderes de opinión en data science

* Asif Bhat – Data Analytics

*Randy Lao – ClaoudML.com

*Kyle MCkiou – Data Science Dream Job

* Favio Vázquez – Scientist

*Eric Weber – Yelp

*World Economic Forum

En español

* Ricardo Alanis – Head of Data Science, Nowports

* Aldo Valadez – Director de Analytics en Banregio

* David Puente – Director de analítica avanzada en ARCA CONTINENTAL

Apunte 3 – Busca contenido de calidad y Gratuito en tu idioma

*Podcast “Café de Datos”

* Data Playbook I – Estrategia de Datos para tu negocio

* Data Playbook II – Generando estrategias de Big Data en tu organización

* Data Playbook III – Ciencia de datos a la mexicana (Lanzamiento 15 de Septiembre del 2020 )

Y si conoces alguna otra fuente de valor compártela en @DatlasMX para que podamos darle compartir y mejorar este contenido para todos.

Hasta aqui la columna de hoy. Nos queda invitarte de manera enérgica a que descargues nuestro Data Playbook Vol. III

Descarga AHORA y aprende sobre ciencia de datos

Saludos y si eres mexican@ disfruta este grito en casa.

Equipo Datlas

-Keep it weird-

Referencias:

Lista de Shrashti Singhal: https://gist.github.com/ShrashtiSinghal

Liga de imagen: https://blog.followclass.com/2016/11/22/the-future-of-education/

¿Cómo aprender Ciencia de datos? 6 lecciones prácticas tras años de intentos – Datlas TIPS –

Durante los últimos años hemos encontrado una explosión de fuentes de aprendizaje en lo relacionado a temas de ciencia de datos. Estos van desde técnicas de autoestudio, ser sombra de científicos, lecturas especializadas, cursos presenciales, cursos en línea, etc.

De todos estos medios compartiremos en esta columna 6 reflexiones importantes que te serán de utilidad si piensas aprender o estás aprendiendo técnicas de ciencia de datos.

Datlas_Blog_Promo_SuscriberFree

También puedes leer.

Datlas_Learned_youngone

1) El objetivo de aprender lo tiene el estudiante. Dejamos claro que el maestro no tiene obligación de que aprendas, más bien el estudiante es quien tiene como meta aprender

  • Establecer metas claras en una línea de tiempo: Ser principiante en al menos un lenguaje de programación en menos de 6 meses
  • Cualquier maestro que encuentres (amigos, maestros formales, libros, cursos en línea, etc.) Puede que sea una figura con alto “expertise”, pero es tu trabajo sacarle el mayor provecho

Datlas_datascience_everywhere

2) Se les aconseja a los estudiantes rodearse de todo lo que huela, se vea y se sienta como “Data Science”

  • Entrar a comunidades locales de Datos. Desde grupos de Facebook, los eventos , conferencias más enfocados al tema que tengas cerca, colegas de aprendizaje y finalmente cambia tu lectura a libros de estos temas
  • También busca aportar a la comunidad de regreso lo más pronto posible

Datlas_dominios

3) Apalanca tu aprendizaje iniciando con un campo de dominio donde tengas experiencia laboral

  • Usa tu experiencia laboral, específicamente los datos a los que has estado expuest@ con más frecuencia para que sea un menor reto descifrar la información que vas a analizar
  • También es recomendable mapear 2 ó 3 sectores nuevos de los que quieres aprender y enfocar tus estudios a esas áreas específicas de datos

Datlas_failfast_learnfaster

4) Vas a cometer errores, así que haz que sean rápidos. Recuerda que se aprende más de tus propios errores y no los de los demás

  • Ponte aprueba buscando bases de datos por tu cuenta y generando análisis sin ningún tipo de guía más que tú propia ideación. Sólo ten en cuenta la utilidad de los casos de estudio que estés revisando
  • Ponte en los zapatos del usuario final o de un cliente que quisiera usar esos datos como ventaja para su negocio. Haz el recorrido completo de un analista de datos para transformar datos en accionables

Datlas_nerdreading

Datlas_Promo_Facebook_Suscribe

5) Aprende a leer documentación técnica y a encontrar información

  • Ciencia de datos tiene como fundamentos la estadística y programación, sin embargo estos son solo los primeros pasos ya que durante el camino habrá que leer mucho para aprender de librerías y métodos que necesitemos aplicar a nuestros análisis
  • Consulta cuáles son las paqueterías o librerías más utilizadas en el lenguaje de programación que estás aprendiendo. Personalmente recomiendo seguir en twitter a otros científicos de datos que publiquen algunos de sus análisis

Datlas_motivation

6) Sé paciente, positivo y busca fuentes de motivación, las necesitarás

  • Ten paciencia, no te frustres. Un buen aprendizaje toma tiempo, a veces avanzamos demasiado rápido y porque tenemos que refrescar la estadística nos frenamos un poco. O bien nos entretenemos mucho en descubrir cómo funciona un nuevo algoritmo cuando con una regresión básica hubieramos solucionado el reto. Hay que ir midiendo qué métodos de aprendizaje nos funcionan mejor
  • También recomiendo seguir en linkedin a personalidades que ya sean científicos de datos de grandes empresas que constantemente publican consejos y guías de aprendizaje para mantenerse más motivado

Datlas_barra_suscribir

Hasta aqui la columna de hoy, recuerda que en este blog contamos con distintos casos de investigación que pueden animarte a investigar. También concluimos con un vínculo a nuestras publicaciones que hemos hecho en conferencias de datos. Esperemos que haya muchos entusiastas de los datos, coméntanos en nuestra redes en Facebook , Twitter e Instagram.

Equipo Datlas