Archivo de la etiqueta: cursos de big data

5 Tendencias DE datos para gerentes de analytics – datlas investigación

La transformación digital en el 2021 continua siendo impulsada por distintos pilares como cultura, tecnología, sistemas de trabajo y análitica de datos. En esta última es importante seguir actualizándonos y el día de hoy dirigimos esta columna a la gerencia de analytics en las organizaciones. Hablaremos de 5 tendencias para analítica y datos en el 2021. Esta columna está inspirada en nuestra meta-investigación y la columna citada en fuentes de @Prukalpa

Te puede interesar también las tendencias del 2021 que investigamos al principio del año. Revísalas aqui.

5 Tendencias de Datos

1) Se mezclan los Data Warehouse y Data Lakes

Recuerda que hablamos sobre arquitectura de proyectos de datos en este blog y te contábamos las diferencias entre data Warehouse vs Data Lakes.

Las líneas que dividen estos conceptos se borran en algunos sistemas y algunas plataformas de analítica se están conectando de manera directa al lago de datos con tecnologías como SnowFlake.

2) Las herramientas de BI tools se hacen “mainstreams”

PowerBI, Qliks y/o Tableau son el nuevo estándar. De hecho plataformas como Tableau acaban de actualizar sus tarifas a puntos de precios bastante asequibles para PYMES ($35 dólares mensuales).

Sin embargo, recuerda tomar en cuenta la arquitectura de datos recomendada en este tipo de proyectos.

3) Los cursos y centros de excelencia de datos se vuelven el nuevo normal

Las capacitaciones de analistas en ciencia de datos se incrementan a alta velocidad. La intención es que más equipos dentro de las organizaciones se sumen a la transformación digital apalancados en plataformas de analítica.

Muchas organizaciones establecieron presupuestos en la contratación de capacitadores, cursos en línea, alianzas con universidades y programas hechos a la medida para aprender las introducciones a la analítica.

Si te interesa conocer un ejemplo de currícula no olvides revisar “Aprendiendo de Ciencia de Datos para Líderes de Equipo”

4) Emergen nuevos roles de datos

Te suena ¿Data Engineer o Data Arquitect? Sin duda alguna son de los principales roles que hemos planteado en estrategias de datos pero muchos analistas “odian” tener dependencias en sus ejercicios de ciencia de datas a la capacidad de obtener información de los ya muy demandados y ocupados “ingenieros o arquitectos de datos”.

En ese sentido se ha buscado empoderar mayormente a los analistas usando plataformas low-code. También abriendoles accesos a los “data-marts” para poder generar reportes con información básica y recurente.

Lo peor que puede suceder en una estrategia de datos es tener más “cadeneros o cuellos de botella” que solucionadores en los procesos planteados.

5) Las alertas inteligentes en negocios se vuelven “pulsos comerciales”

Hemos notado incrementos en solicitudes y RFQ de compañías que quieren estar más enterados de su contexto. Iniciativas como procesamientos de NLP de redes sociales, seguimiento a notas de ubicaciones estratégicas, “feeds” o síntesis de información de industria, entre otras son alguna evidencia del crecimiento de la “inteligencia” que se construye en los negocios.

Sin embargo, tanta información no es de mucha utilidad si esta no genera “alertas o notificaciones” oportunas para reaccionar. Imagínate que en determinado momento te cambian la tarifa del gas y tienes que esperar a la reunión trimestral de consejo para aceptar los cambios. Pero por otro lado, si usando datos y alertas en tiempo real monitoreamos los incrementos en precios de gas en distintos mercados podemos prepararnos con coberturas para el inminente crecimiento en tarifas.

Hasta aqui la columna de hoy ¿Qué opinas de las tendencias? ¿Cuál crees que es importante monitorear? y ¿Qué medios sigues para alertarte de los cambios en la industria? Sigamos la conversación en redes a través de @DatlasMX

Equipo Datlas

– Keep it weird –

Fuentes

Imagenes de unsplash y pinterest (https://ar.pinterest.com/pin/579345939554969637/)

https://towardsdatascience.com/the-top-5-data-trends-for-cdos-to-watch-out-for-in-2021-e230817bcb16

¿Cómo aprender Ciencia de datos? 6 lecciones prácticas tras años de intentos – Datlas TIPS –

Durante los últimos años hemos encontrado una explosión de fuentes de aprendizaje en lo relacionado a temas de ciencia de datos. Estos van desde técnicas de autoestudio, ser sombra de científicos, lecturas especializadas, cursos presenciales, cursos en línea, etc.

De todos estos medios compartiremos en esta columna 6 reflexiones importantes que te serán de utilidad si piensas aprender o estás aprendiendo técnicas de ciencia de datos.

Datlas_Blog_Promo_SuscriberFree

También puedes leer.

Datlas_Learned_youngone

1) El objetivo de aprender lo tiene el estudiante. Dejamos claro que el maestro no tiene obligación de que aprendas, más bien el estudiante es quien tiene como meta aprender

  • Establecer metas claras en una línea de tiempo: Ser principiante en al menos un lenguaje de programación en menos de 6 meses
  • Cualquier maestro que encuentres (amigos, maestros formales, libros, cursos en línea, etc.) Puede que sea una figura con alto “expertise”, pero es tu trabajo sacarle el mayor provecho

Datlas_datascience_everywhere

2) Se les aconseja a los estudiantes rodearse de todo lo que huela, se vea y se sienta como “Data Science”

  • Entrar a comunidades locales de Datos. Desde grupos de Facebook, los eventos , conferencias más enfocados al tema que tengas cerca, colegas de aprendizaje y finalmente cambia tu lectura a libros de estos temas
  • También busca aportar a la comunidad de regreso lo más pronto posible

Datlas_dominios

3) Apalanca tu aprendizaje iniciando con un campo de dominio donde tengas experiencia laboral

  • Usa tu experiencia laboral, específicamente los datos a los que has estado expuest@ con más frecuencia para que sea un menor reto descifrar la información que vas a analizar
  • También es recomendable mapear 2 ó 3 sectores nuevos de los que quieres aprender y enfocar tus estudios a esas áreas específicas de datos

Datlas_failfast_learnfaster

4) Vas a cometer errores, así que haz que sean rápidos. Recuerda que se aprende más de tus propios errores y no los de los demás

  • Ponte aprueba buscando bases de datos por tu cuenta y generando análisis sin ningún tipo de guía más que tú propia ideación. Sólo ten en cuenta la utilidad de los casos de estudio que estés revisando
  • Ponte en los zapatos del usuario final o de un cliente que quisiera usar esos datos como ventaja para su negocio. Haz el recorrido completo de un analista de datos para transformar datos en accionables

Datlas_nerdreading

Datlas_Promo_Facebook_Suscribe

5) Aprende a leer documentación técnica y a encontrar información

  • Ciencia de datos tiene como fundamentos la estadística y programación, sin embargo estos son solo los primeros pasos ya que durante el camino habrá que leer mucho para aprender de librerías y métodos que necesitemos aplicar a nuestros análisis
  • Consulta cuáles son las paqueterías o librerías más utilizadas en el lenguaje de programación que estás aprendiendo. Personalmente recomiendo seguir en twitter a otros científicos de datos que publiquen algunos de sus análisis

Datlas_motivation

6) Sé paciente, positivo y busca fuentes de motivación, las necesitarás

  • Ten paciencia, no te frustres. Un buen aprendizaje toma tiempo, a veces avanzamos demasiado rápido y porque tenemos que refrescar la estadística nos frenamos un poco. O bien nos entretenemos mucho en descubrir cómo funciona un nuevo algoritmo cuando con una regresión básica hubieramos solucionado el reto. Hay que ir midiendo qué métodos de aprendizaje nos funcionan mejor
  • También recomiendo seguir en linkedin a personalidades que ya sean científicos de datos de grandes empresas que constantemente publican consejos y guías de aprendizaje para mantenerse más motivado

Datlas_barra_suscribir

Hasta aqui la columna de hoy, recuerda que en este blog contamos con distintos casos de investigación que pueden animarte a investigar. También concluimos con un vínculo a nuestras publicaciones que hemos hecho en conferencias de datos. Esperemos que haya muchos entusiastas de los datos, coméntanos en nuestra redes en Facebook , Twitter e Instagram.

Equipo Datlas