Archivo de la etiqueta: datlas academy

LANZAMIENTO DATA PLAYBOOK IV: 2 Caras de la Ciencia de Datos – Ecosistemas Datlas

En Datlas llevamos más de 5 años generando contenido para la comunidad. Comenzamos con este blog donde en más de 300 columnas hemos documentado temas de ciencia de datos y transformación digital. Continuamos con el podcast “Café de Datos” donde acumulamos más de 60 horas de diálogos con expertas y expertos de industria. Todo esto lo integramos en la nueva plataforma de conocimiento Datlas Academy. Y justo en la víspera de este lanzamiento abrimos punta con la nueva edición de “Data Playbook Vol. IV”.

Lanzamiento

Hemos abierto en nuestro sitio web y cargado en PDF (dentro de nuestro marketplace) el nuevo Data Playbook IV titulado “Dos Caras de la ciencia de datos”. Esto con la motivación de mostrar el potencial de la analítica de la mano de un uso responsable y las precauciones que hay que integrar al aprendizaje de la materia para que no se vuelva una amenaza a la sociedad.

Comenzamos el texto remontándonos a la historia de las telecomunicaciones para llevar a los lectores a la reflexión sobre las denominadas “Smart cities” con sofisticados sistemas que pueden identificar en segundos a cualquier ciudadano.

Desde las conversaciones del equipo Datlas, con nuestros aliados, clientes y expertos invitados al podcast “Café de Datos” reflexionamos que el rigor en el campo de la analítica irá incrementando. Tendremos que considerar nuevos mecanismos para identificar impostores o profesionales con malas prácticas. Así mismo, usando como pivote de nuestras observaciones los famosos documentales de “Netflix” que han ayudado a incrementar la sensibilidad de la audiencia a la protección de datos personales y el uso responsable de las redes sociales, compartimos las que consideramos las mejores prácticas para los cuidados de datos personales.

En el texto también sugerimos a instituciones públicas liberar algunas bases de datos haciendo hincapié en el movimiento de “gobierno abierto y transparente” para que más datos de nuestras comunidades puedan ser explorados por científicos de datos independientes. Finalmente, no dejamos de lado la época transformacional y la digitalización que ha impulsado la pandemia. Presentamos los casos para transformar crisis en oportunidades. También invitamos a revisar a las crisis, no tanto desde la causa, sino hacia la consecuencia con la metáfora del “efecto dominó”.

Este documento (Data Playbook IV) recopila los aprendizajes más importantes que hemos tenido como startup en  Datlas durante el último año. Cumpliendo con nuestra filosofía, te lo compartimos para que puedas aprovecharlo al máximo y nos ayudes a continuar impulsando la ciencia de datos en LATAM. No te detengas y compártelo a más gente para que conozca de estos temas.

Este lanzamiento es especial para los fanáticos que descargaron “Ciencia de Datos a la Mexicana”. Gracias de verdad a todas las personas que se han tomado el tiempo de revisarlo, ha sido todo un éxito y nos motiva a continuar en esta ruta. Además puedes continuar consultando nuestros otras ediciones en nuestro marketplace . Todos de manera gratuita por tiempo limitado.

Conoce más de Datlas Academy

En este documento reforzamos el mensaje de nuestro lanzamiento de una plataforma de educación sobre analítica y transformación digital.

Recordando que para los primeros usuarios ya están en vivo 3 cursos sobre storytelling de datos, definición de KPIs e introducción a la ciencia de datos.

Hasta aquí la columna de hoy, continua con la conversación revisando nuestro contenido en redes y participa con tus comentarios en @DatlasMX.

Equipo Datlas

– Keep it weird –

¿cómo detectar fake news manualmente? – investigación datlas

Hemos hablado antes de “Fake News” en este blog y con motivo a una serie de noticias falsas que se dispersaron en “Whatsapp” este fin de semana que pretendían dar un mensaje del “Secretario de Economía de Nuevo León” quisimos compartir y reforzar este tema.

En este episodio haremos hincapie de algunas técnicas para detectar “fake news” y repasar los puntos más importantes en este ejercicio. (Usaremos como fuente esta columna: https://www.visualcapitalist.com/how-to-spot-fake-news/)

¿Qué tipo de contenido falso existe?

  • Parodia o engañosa
  • Conexión Falsa entre el encabezado y el contenido
  • Contenido confuso
  • Contexto falso en tiempo o lugar
  • Contenido con fuentes anónimas o no identificables
  • Contenido manipulado
  • Contenido 100% fabricado

***Te puede interesar “Radiografía de Fake News en México”. Liga: https://blogdatlas.wordpress.com/2021/06/20/fake-news-radiografia-en-mexico-columnas-de-opinion-datlas/

¿Cómo se puede detectar ?

  • La fuente – Cuál es la historia, quién la investiga y/o comparte
  • El URL (liga de website) – Es conocido el sitio web o tiene algún respaldo. Si, por ejemplo habla sobre una nota mexicana sería más confiable que termine en “.com.mx”
  • El texto – La ortografía y puntuación tendrá que ir de acuerdo a la seriedad de la nota
  • La información – Revisa las citas de otros autores y valida la información en otras fuentes
  • El autor – Si lo buscas encontrarías otra nota de la misma o el mismo autor
  • Fuentes de respaldo – Revisa la información vinculada en links que te lleven a otros sitios
  • La fecha – La publicación es oportuna, actual o es una re-publicación de otro momento en el tiempo
  • El sesgo – Considera si tus creencias afectan el proceso de validación de la nota
  • Experta – Tiene alguna referencia estilo académica y está hecha de manera correcta

*** Te puede interesar “Fake News en tiempos de COVID-19”. Liga: https://blogdatlas.wordpress.com/2020/04/20/fake-news-en-covid-19-la-2da-pandemia-conferencia-talend-land-tv-2020/

También te dejamos el video de la charla completa que se impartió en “LAB NL de CONARTE” en Nuevo León, México.

Hasta aqui la columna de hoy. Te invitamos a continuar aprendiendo con nuestro contenido y a no perder la oportunidad de suscribirte a Datlas Academy. Esta nueva iniciativa que lanzamos para incrementar el aprendizaje de analítica y transformación digital en la comunidad de LATAM.

Equipo Datlas

-Keep it weird-

SISTEMA ILUO para matriz de habilidades de departamentos de datos en organizaciónes – investigación datlas

Generar proyectos y áreas de datos exitosos está directamente relacionado al capital humano. Es decir, para poder avanzar con proyectos de analítica que abonen a la transformación digital de nuestras organizaciones es necesario mapear y desarrollar talento. Pero ¿Cómo lograrlo de manera ágil y sencilla? En esta columna hablaremos del sistema ILUO que nos permitirá monitorear las habilidades dentro de nuestro equipo de datos.

** Te podrá interesar ¿Cómo detectar un impostor de datos?

Como ejemplo, estas habilidades para un departamento de datos en una organización de mediano tamaño

El objetivo del sistema ILUO es desarrollar y administrar habilidades dentro del equipo a nivel departamento (No a nivel individual).

Dentro de una matriz se coloca los miembros del equipo del lado izquierdo, las habilidades en la parte superior y dentro de la matriz se categoriza con respecto al dominio de cada habilidad por miembro del equipo.

Las siglas ILUO tienen un significado gráfico y representan el avance que se va teniendo en el desarrollo de los empleados de la organización. La cantidad de líneas que forman cada letra indica el nivel de madurez de cada empleado. Los cuatro niveles de habilidad ILUO indican:

Nivel I: Aquellas personas que se encuentran en capacitación para conocer y cumplir con su tarea, sin intervenir en los procesos.

Nivel L: Aquellas personas que ya intervienen en los procesos, pero no están calificadas para operar sin supervisión.

Nivel U: Aquellas personas que ya están acreditadas para cumplir con su tarea bajo los estándares y el tiempo requerido.

Nivel O: Aquellas personas que ya han acreditado todos los niveles de habilidad y recibieron una certificación para poder formar a otras personas.

**Te podrá interesar “Los 5 perfiles para un equipo de Datos”

¿Qué pasos hay que seguir para desarrollar una matriz de habilidades en un equipo de Datos?

  1. Identifica y enlista las habilidades de tu departamento de datos
  2. Enlista el “staff” en los renglones de la matriz
  3. Identifica del 1 al 5 el mayor nivel en que cada miembro del equipo se desarrolla en esa habilidad
  4. Una vez que tenemos calificadas estas habilidades, hay que presentárselo al líder de equipo y desarrollar un plan de acción (Capacitación, nivelación, apoyos, entre otros.)
  5. Finalmente comprometer fechas y dar monitoreo constante

** Te podrá interesar “¿Por qué pueden fracasar los proyectos de datos?”

¿Cuáles son las ventajas de implementar el sistema ILUO?

·Incrementar la calidad de sus productos y/o servicios

·Reducción de desperdicios

·Mejorar la satisfacción de sus clientes internos y externos

·Lograr la continuidad operativa

·Se elimina o reducen ausentismo y rotaciones

·Aumenta la motivación de los empleados

·Desarrolla el sentido de pertenencia hacia la organización

** Te puede interesar nuestra columna sobre “Diseño de perfiles para áreas de analítica”

Hasta aqui la columna de hoy, te invitamos a continuar aprendiendo en nuestro podcast y a suscribirte a nuestra nueva iniciativa en Datlas Academy donde obsequiaremos algunos cursos para mantenernos a la vanguardia en temas de transformación digital.

Fuentes

https://www.leanconstructionmexico.com.mx/post/sistema-iluo-qu%C3%A9-es-y-como-implementarlo-ejemplo-de-matriz-iluo