Archivo de la etiqueta: excel

Por qué no necesitas un Data Scientist (es Clickbait) en tu organización Parte 1 – Datlas News

Data scientist la carrera “más sexy” del 2018. Los científicos de datos son los mejores pagados.  Los datos son el petróleo del futuro. Habrá un déficit de 400k especialistas de big data para 2020. Si no estás avanzando con un equipo que desarrolle Inteligencia Artificial vas a quebrar.

¿Les suena conocido? No he dejado de escuchar en cada conferencia de empresarios que nos toca asistir aseveraciones de tal calibre. Justamente queremos hacer la reflexión sobre este tema en esta columna. Y que no cunda el pánico, no es una discusión de 1-0 o blanco y negro. Pero sí hace falta balancear el diálogo de si tu empresa necesita un especialista en datos o no. Iniciamos.

View at Medium.com

Datlas_barra_suscribir

El pase de diapositivas requiere JavaScript.

Una organización, con o sin fines de lucro, va creciendo de manera orgánica conforme las necesidades van rebasando a los puestos. Al principio un par de personas gestionan el negocio, pero conforme va creciendo la operación es necesario buscar ampliar el capital humano. Después viene el tema de no tener personal ocioso y optimizar equipos y personas. Ya al final viene los puestos de innovación, que muchos lo ven como pirotecnia. Sin ofender a nadie, me refiero a que hay áreas que no impulsan directamente a la operación ya que su valor agregado va más dirigido a la báscula de ventajas competitivas.

En resumen, concédenos generalizar el proceso de la siguiente manera:

1.Nace la organización > 2.Crece en una sola gestión > 3.Se multiplica en distintas áreas >> 4.  Se optimiza constantemente >> 5. Innova en apuestas a ser disruptiv@

¿Dónde entran los Data Scientist (DS) ? ¿A qué horas me transformo con datos?

La mayoría de las organizaciones hacen estas inversiones en el paso 5) ¿Cuál es el reto? Cuando la cultura de innovación en la empresa no está 100% socializada y la ciencia de datos es un área que con muchos celos demanda atención, gobernanza y autoridad para sacarle valor a un activo de la compañía,(los datos) y reflejar la voluntad de entender que “Los datos no pertenecen  a ningún área o dirección, son de la compañía“.

¿Estoy listo para transformar mi organización con DS?

La primera evaluación es hacia tu organización ya que para implementar esta innovación tiene que lograrse esta cultura de innovación al mismo tiempo del timing tecnológico correcto. Es decir

  1. Si no estás listo para abandonar los excel-es que llevas operando y mejorando toda la vida. No contrates un DS
  2. Si te da miedo transferir procesos y responsabilidades a “cajas negras” que no vas a entender. No contrates un DS
  3. Si eres de los líderes que les gusta decir cómo resolver el problema, en lugar de ceder el problema y la resolución del mismo a tu equipo. No contrates un DS
  4. No entiendes los beneficios de la ciencia de datos o el potencial de tu información. No contrates un DS, terminarás concluyendo que “no sirve” sólo porque no supiste sacarle valor
  5. Y por último, si quieres un DS para que se la pase extrayendo datos y datos, mejorando tableros y visualizaciones. No contrates DS, ambos se frustarán por sólo estar dando la mitad de todo el potencial

(Tomado de inspiración B) citado al final del blog). El trade-off es claro, hay que evaluar.

Mucha crítica ….¿Y qué consejos son mejores prácticas para lograr transformar?

Como cualquier caso en una organización, tienes que tener algunas historias de éxito para convencer a los tomadores de decisiones que vale la pena hacer la apuesta. La mayoría de los casos comienzan contratando consultorías y empresas externas para aprender cómo funciona este mundo.

  1. Vete a lo seguro. Analiza a tus clientes, toma decisiones comerciales como cambios de precios, planes promocionales, marketing y mide resultados KPIs.
  2. Evalúa distintas consultorías que sobre todo tengan capacidad y voluntad de “enseñarle” a tu organización cómo funciona.
  3. Invita a distintos roles a que te acompañen en el proceso.
  4. Genera la historia, “socializala” (Que todos se enteren) y  mapea nuevas posibilidades para datos
  5. Finalmente evalúa repetir el proceso hasta que la organización pueda ceder recursos para interiorizar las capacidades. Aún así la mayoría de las organizaciones que orquestan un área de datos interna contratan y subcontratan. Así es , hasta el mismo Google, IBM, Microsoft o startups como UBER, AIRBNB, CABIFY , entre otras distribuyen el trabajo ya que retener a científicos de datos en una organización es complicado por la demanda actual que existe. Además exigen un alto grado de especialización que puede capitalizar una consultoría porque el análisis de datos es su negocio principal que no pueden descuidar.

No olvides leer nuestro blog de “Los 5 perfiles para una estrategia de datos en tu empresa”

Para el cierre ¿En qué áreas donde agrega valor un científico de datos?

Cerramos con un par de infografías que mapean las áreas de mayor valor agregado para un científico de datos. Recomendamos leer y generar un plan para implementar los “quick-hits” de mayor impacto.

El pase de diapositivas requiere JavaScript.

Hasta aqui la parte uno de la columna de Datlas más enfocados en la cultura de innovación y datos antes de arrancar sin un plan. En la siguiente parte comentaremos de algunas herramientas que pueden ayudar a iniciar experimentaciones de big data sin tener que hacer la “gran inversión”.

Gracias por leer, estamos abiertos a opiniones y buscamos difundir este tema en organizaciones que están batallando mucho para iniciar a experimentar con datos. Siempre contarán con empresas y startups como Datlas para acompañarlos en su desarrollo.

Inspirado gracias a la lectura de:

View at Medium.com

Anuncios