Aprendiendo de Ciencia de datos para líderes de equipo – manuales datlas

El mes pasado terminamos el curso de «Data Science for Managers». Este curso tiene un alcance específico para gerentes que están liderando proyectos de analítica y transformación digital en organizaciones. En esta columna compartiremos 5 de los aprendizajes así como un podcast que grabamos alrededor de algunos conceptos de analítica y ciencia de datos que aprendimos.

Sobre los niveles de madurez en analítica para organizaciones

Cuando comienzas a hablar de ciencia de datos en organizaciones es muy importante darse un tiempo para la auto-evaluación. Entender cuál es el nivel de madurez de tu empresa o equipo te ayudará a seleccionar las estrategias adecuadas para ese nivel. En este caso el equipo que nos impartió las clases, Galvanize, nos recomendó este modelo de 5 niveles para medir el nivel de madurez de datos. Estos los identificamos y los discutimos en el podcast que te recomendamos escuchar.

** Te puede interesar aprender del «SISTEMA ILUO para desarrollar matrices de habilidades en departamentos de datos»

Sobre los lenguajes de programación para ciencia de datos más usados en la industria

En la industria sigue existiendo una variedad cada vez más crecientes de lenguajes de programación con enfoque a paqueterías que habilitan la resolución de problemas de analítica de datos. En general, de software libre Python y R fueron los más mencionados. Por otro lado los que consideran uso de licencia, sería SAS, MATLAB o SPSS. La extracción de información con SQL también fue mencionada. Todos estos apuntes para posible agenda de desarrollo de científicos de datos.

Sobre el pensamiento sistémico en analítica con transformación digital

Lo que continuará pasando al futuro es una mayor integración de hardware especializado que genere y comparta datos. En un pensamiento de proyectos sistémicos no se trata de ciencia de datos o inteligencia artificial por su cuenta sino de un pensamiento sobre sistemas inteligentes.

Este tipo de pensamiento nos ayudará a pensar cuando se contrate un proveedor en una organización si la plataforma que ofrece ¿Se integra con sistemas IOT? ¿Estaría contemplado para complementar un sistema inteligente?

Sobre la priorización

Otro de los beneficios de este curso fue que se lleva con otros expertos de la industria que convoca el Monterrey Digital Hub. Cuando los facilitadores generaron la consulta de cómo se priorizan los datos en las compañías hoy en día estas fueron las respuestas.

La respuesta de 6 de cada 10 asistentes fue que la visión de los ejecutivos (directivos) es lo que dicta la prioridad. Otros miembros complementaron con alternativas de presupuesto, impacto a indicadores clave o asignación de recursos por parte de la organización. Conforme la industria y los proyectos de datos se califiquen con más rigor muy seguramente la prioridad se generará más orientado a KPIs u OKR .

Sobre cómo medir el valor de los proyectos

Otro de los puntos a capitalizar, de lo que esperamos se pueda incrementar la cultura en las organizaciones, es de cómo medir de manera continua el ROI (retorno sobre la inversión) de los proyectos de analítica.

En el curso nos explicaron algunos de los factores como considera talento, productos de datos y tecnología necesarios para calcular el ROI. Y de manera muy importante detectar a qué oportunidad de negocio estamos impactando: Nuevas oportunidades, optimizar o automatizar.

Hubo muchos aprendizajes más, pero quisimos destacar algunos aqui y otros más en nuestro episodio de podcast de analytics «Café de Datos» #Cafededatos.

Hasta aqui la columna de hoy si te gustó la columna te invitamos a recomendar así como SUSCRIBIRTE a nuestro PODCAST Café de datos

Saludos

Equipos Datlas

– Keep it weird-