¿refrigeradores conectados a internet? industria 4.0: iot -investigación datlas

Anteriormente hemos platicado de ciudades inteligentes en donde tocamos brevemente el tema de sensores e internet de las cosas. En esta ocasión queremos contarte un poco acerca de que trata este gran elemento dentro de la transformación digital y la industria 4.0.

Antes de iniciar hay que tener claro que el término “industria 4.0” se utiliza para referirse a la llamada “cuarta revolución industrial”. El término se originó en Alemania en el 2011, y hace referencia a un modelo de manufactura avanzado que incluye tecnologías integradas una con otra de manera física o digital.

Existen varios tipos de tecnologías que pueden ser integradas a estos modelos, como por ejemplo: inteligencia artificial (IA), robots, cloud computing y efectivamente, el Internet de las Cosas (IoT por sus siglas en inglés).

Universidad y 4ª revolución industrial | Aprenentatge Servei

¿Qué es el Internet de las Cosas?

A grandes rasgos, el internet de las cosas encasilla todo lo que está conectado a internet, permitiendo que los objetos se “comuniquen” entre ellos. De manera más específica, el IoT es una herramienta tecnológica que permite integrar sistemas de procesamiento, almacenamiento y comunicación entre diversos procesos conectados entre si.

¿Dónde está presente el Internet de las Cosas?

El objetivo principal del IoT, es automatizar procesos. Por ello, está presente en muchos objetos cotidianos; desde los celulares que usamos, relojes inteligentes, aparatos electrónicos (TVs, consolas), un amplio abanico de electrodomésticos (como refrigeradores) y hasta cámaras.

También está presente dentro de las grandes industrias, por ejemplo en las industrias manufactureras, se encuentra en forma de sensores que mandan alertas si algo está pasando; en los grandes campos de cultivo donde gracias a algunos sensores, se puede conocer a detalle la calidad de la tierra.

Internet de las Cosas: Definición, funcionamiento, 6 beneficios y ejemplos

En el giro de transporte y logística, gracias al IoT, se pueden administrar las flotas de automóviles, barcos y aviones, tomando en cuenta factores como el cambio climático, disponibilidad de la vía, tránsito, entre otros. Además, el IoT se puede usar para mejorar la seguridad de los trabajadores. Por ejemplo, empleados en entornos peligrosos como minas, campos de petróleo y plantas químicas, necesitan tener conocimiento de los posibles eventos peligrosos que podrían suceder. Al estar inmersos en la tecnología IoT, pueden recibir alertas o notificaciones que les permitan tomar las acciones pertinentes.

Los retos actuales del IoT

Ahora bien, conociendo un poco del IoT, sus aplicaciones y beneficios, es importante conocer los retos a los que se enfrenta esta tecnología en el mundo moderno.

En primera, ¿cómo migrar a un ecosistema IoT? Se puede decir que tratar de migrar a la industria 4.0 es complicado. No solamente se limita a grandes inversiones económicas, implementación de tecnologías, equipamiento o softwares. Se trata de realmente lograr un cambio de visión y perspectivas dentro de la compañía, algo que no es para nada sencillo.

Volviendo al tema financiero, los costos de inversión para un ecosistema IoT pueden variar mucho, dependiendo del tamaño de la compañía y los alcances que se buscan, pero podemos asegurar que no es para nada barato. Aunado a esto, se estima que a las compañías, ver el retorno de inversión (ROI) les puede tomar entre 7 y 12 años.

La seguridad y privacidad digital también es un reto que afronta la transformación IoT. Las compañías pueden ser víctimas de amenazas, ataques por parte de hackers y hasta filtración información sensible. Se requiere que se desarrolle confianza en los ecosistemas IoT, sin embargo, las frecuentes amenazas a la seguridad y privacidad, lo hacen un camino difícil de recorrer.

Hasta aquí la columna de hoy. ¿Qué opinas del IoT? ¿En el futuro realmente puede ser más accesible y realizable? ¿Conoces algunos casos de IoT aplicados en la industria? Compártenos tu opinión a través de nuestras redes sociales @DatlasMX

Equipo Datlas

-Keep it weird-

Utilities: abundancia de datos y gran oportunidad para analítica y big data – Investigación DATLAS

Hace alrededor de un mes tuvimos la oportunidad de tener como invitado en nuestro podcast Café de Datos al Global Head of AI & Analytics en Telefónica IoT & Big Data Tech el gran Antonio Pita Lozano con quien estuvimos platicando acerca de la ciencia de datos como una carrera profesional, como ensamblar equipos de ciencia de datos en las organizaciones e incluso nos comentó acerca del Máster en Ciencia de Datos del cual es director en KSchool. En esta columna vamos a tomar una de las aportaciones que más nos sorprendió de la charla con Antonio para profundizar un poco más.

Para iniciar, como es costumbre con nuestros invitados en el podcast, les pedimos que nos compartan ¿con quién se tomarían un café? si pudieran elegir a cualquier personaje de la historia. En este caso Antonio nos comentó un par de nombres famosos, pero terminó inclinándose por Alan Turing. Para quien no lo conozca Alan Turing fue un matemático nacido en Reino Unido que fue un protagonista del desarrollo del campo de la teoría computacional. Recientemente se hizo más famoso por su función de criptógrafo descifrando mensajes de los “nazis” con la máquina ENIGMA después de la segunda guerra mundial. De hecho en Datlas le hicimos un homenaje a este gran personaje por el Día de Muertos que celebramos en México, puedes ver el altar homenaje aquí.

Después de este pequeño ritual de bienvenida para calentar motores Antonio nos relató un poco de su carrera y desarrollo profesional. Durante este bloque comentamos acerca de la transformación digital que han experimentado, y aprovechado, algunos grandes sectores económicos como lo es la industria financiera. Asimismo le pedimos a Antonio que nos diera su perspectiva alrededor de sectores o industrias que tuvieran grandes cantidades de datos y al mismo tiempo una gran oportunidad de aprovecharlos o explotarlos de una mejor manera. Sorprendentemente para nosotros, Antonio nos hizo notar que uno de los sectores que ha tenido una inmersión importante en temas de analítica de datos, después del sector financiero, ha sido el sector de las Utilities y quisimos profundizar un poco en esta parte.

¿Qué son las Utilities?

Las utilities es la denominación en inglés de aquellas compañías que pertenecen al sector energético y de servicios colectivos que prestan servicios de los cuales no se puede prescindir como por ejemplo: electricidad, gas, agua, residuos, etc.

Se consideran empresas seguras puesto que los ingresos son estables, sin embargo, debido a la gran inversión que requieren, suelen tener grandes cantidades de deuda, provocando una gran sensibilidad ante los cambios en la tasa de interés. Un aumento de la tasa de interés, va acompañado del incremento de la deuda, lo que provoca que el funcionamiento de las Utilities sea mejor cuando las tasas de interés están decayendo o se mantienen bajas.

¿Cómo aprovechan el Big Data y la analítica de datos las Utilities?

Antes que nada hay que entender que estas empresas apalancan otra de las grandes tendencias de la transformación digital que es el Internet de las Cosas (IoT) y los sensores.

Growing Technology Acceptance Boosts Demand for IoT in Utilities

Esta nueva forma de obtener datos les permite generar casos de uso como:

Predicción, detección y prevención de cortes de energía

Un corte de energía puede hacer que todo un país se detenga, como el apagón del noreste de 2013 que afectó a más de 45 millones de personas en los Estados Unidos. Las condiciones climáticas desfavorables son una de las principales causas de tales cortes. Las Utilities están construyendo una infraestructura y sensores más inteligentes para mejorar la previsibilidad y prevenir estos escenarios de interrupciones.

Los sistemas modernos de cortes de energía emplean soluciones en tiempo real que operan en base a datos en vivo y algoritmos inteligentes para predecir y prevenir cualquier situación posible.

Estos sistemas son capaces de predecir el impacto de cualquier eventualidad cercana a la red, posibles cortes causados ​​debido a eventos de medidores inteligentes, cortes específicos de la región y más.

Gestión de carga inteligente

Para gestionar de forma eficiente la carga de energía, las Utilities necesitan equilibrar de forma estratégica e inteligente la demanda de energía con un suministro de energía óptimo en un período de tiempo determinado. Tener un sistema de gestión de carga inteligente les permite cubrir los requisitos de gestión de red de extremo a extremo, incluidas la demanda y las fuentes de energía con la ayuda de fuentes de energía distribuidas, sistemas de control avanzados y dispositivos de uso final.

Todos los componentes del sistema de gestión generan datos. Al aplicar análisis de Big Data, las empresas pueden tomar decisiones con precisión con respecto a la planificación y generación de energía, la carga de energía y la estimación del rendimiento.

▷ Mantenimiento Predictivo - Digitalización y optimización de las fábricas

Gestión preventiva de activos

Dado que es una industria intensiva en activos y depende en gran medida del rendimiento óptimo de sus equipos e infraestructura de red. La falla de estos activos puede causar serios problemas de distribución de energía y, en consecuencia, mermar la confianza del consumidor. Por lo tanto, prevenir este tipo de incidentes es una de las principales prioridades de la industria.

Para el mantenimiento preventivo de equipos, el Big Data y la analítica viene al rescate. Los activos están integrados con sensores inteligentes, rastreadores y soluciones de datos que transmiten información en tiempo real al centro. Los datos recopilados se pueden procesar y analizar para identificar posibles problemas con el mantenimiento del equipo, lo que permite un manejo proactivo de la situación.

Mayor eficiencia operativa

Aprovechar los datos en tiempo real de los activos relacionados con la tasa de actividad, el estado de las operaciones, el tiempo, el análisis de la oferta y la demanda, y más, ayudan a las empresas de Utilities a optimizar la eficiencia energética y el rendimiento de los activos. Las aplicaciones de Big Data y analítica les permiten mejorar la confiabilidad, la capacidad y la disponibilidad de sus activos de red mediante el monitoreo continuo del costo y el rendimiento.

Y… ¿de que tamaño es el mercado?

Finalmente, Antonio nos hizo reflexionar acerca de las aplicaciones de Big Data, analítica de datos, Internet de las Cosas y sensores que tiene este sector. Hemos visto ejemplos claros y aplicaciones con casos de negocios sustentados, pero como emprendedores, como proveedores de soluciones de analítica, la última disyuntiva que pudiéramos tener es ¿de qué tamaño es el pastel? y justo nos dimos cuenta que la inversión en analítica por parte de las Utilities ha venido creciendo desde el 2012 y el año pasado logró posicionarse en $3.8 billones de dólares, de los cuales Latinoamérica participa con alrededor de $0.5 billones de dólares.

Así que, al igual que nosotros esperamos que hayas aprendido como nosotros un poco más alrededor de una industria que a pesar de ser longeva tiene una gran oportunidad y ya esta adoptando nuevas tecnologías.

Si eres emprendedor, profesionista o simplemente te interesa adentrarte al mundo de la ciencia de datos te recomendamos escuchar el Episodio #44 de nuestro podcast Café de Datos con Antonio Pita y conocer más acerca del Máster en Ciencia de Datos de KSchool del cual Antonio es el director y tiene un modelo muy interesante de aprendizaje basado no solo en la teoría sino también en la práctica.

Hasta aquí la columna de hoy, no olvides compartirla con tus colegas y seguirnos en nuestras redes sociales como @DatlasMX

Bibliografía:

BigDataissuesandopportunitiesforelectricutilities.pdf

The role of big data analytics in Energy & Utilities (cigniti.com)

Utility | WikiFinanzas – Finanzas para Mortales (wiki-finanzas.com)