Archivo de la etiqueta: sistemas de recomendaciones ecommerce

5 ejercicios de ciencia de datos que todo e-commerce debería realizar – Datlas Manuales

En un e-commerce o tienda en línea cada click e interacción que se tiene con el sitio web es una oportunidad de almacenar datos para generar desarrollos que mejoren la experiencia del usuario. Y por ende, que puedan incrementar los ingresos o desarollar ahorros en la operación. Algunas preguntas que podrían salir al leer estadisticas en sistemas como google analytics serían:  ¿Por qué estarías cargando costos logísticos de un producto que ni si quiera se visualiza? ¿Si tu top 80% de ventas se concentra en 5 productos cómo te pudieras diversificar más? ó ¿Al usuario que adquiere zapatos cómo le recomiendo calcetines (productos similares?

**En la columna algunos términos están vinculados a otras columnas que hemos escrito que pueden apoyarte a incrementar tu conocimiento sobre el tema**

Datlas_Blog_Promo_SuscriberFree

Así como estos ejemplos, el E-commerce es uno de los sectores que más aplicaciones de ciencia de datos tiene por su abundancia de puntos de recolección de datos. En esta columna exploraremos algunas de las técnicas más utilizadas.

5 aplicaciones de ciencia de datos para e-commerce

1) Predicciones y pronósticos de venta en diferentes jerarquías de catálogo

Datlas_prediccion_gif

Los analistas y las personas en general somos buenos para pensar cómo podrían ser las cosas en el futuro, pero malos para puntualmente saber cuándo ocurrirá (¿Coronavirus o COVID-19? Imposible de predecir). Por otro lado la escuela de planeación de escenarios nos propone prepararnos para toda las posibles vetas que se abrirán al futuro dado nuestro contexto y las decisiones que tomamos.

Llevando esto al sentido del e-commerce, si buscamos una predicción de ventas para mejorar la toma de decisiones no solamente nos tenemos que basar en la venta de la última semana o mes. Podemos aprovechar todo el entorno digital, desde la lectura de tendencias que nos brinda plataformas como “google trends”, tendencias de facebook o platicas de twitter hasta la información interna del sitio como tiempo de estancia en sitio web, carritos sin pagar con ciertos artículos seleccionados, entre otros.

Es importante destacar, que la aplicación deberá aprovechar las bondades de ciencia de datos y capitalizar información a distintas jerarquías. Tradicionalmente en una oferta comercial se segmenta por: Categoría, subcategoría, segmento, subsegmento…. hasta llegar a producto. Esta estructura de datos nos permite aumentar la resolución al momento de generar análisis y predicciones. Entender si, por ejemplo ciertos “shorts o pantalones cortos” que vendemos en nuestra tienda están incrementando su venta porque toda la categoría de “ropa para verano” está creciendo o porque se trata de un comportamiento atípico.

2) Sistema de recomendaciones entre productos

El pase de diapositivas requiere JavaScript.

“Otros usuarios que compraron este producto también compraron…” ¿Te suena familiar? (También ocurre en netflix o en spotify cuando te recomiendan contenido de manera autónoma) Y es que en el mundo digital los sitios de e-commerce operan generan segmentos de manera dinámica. Esto significa que los comportamientos de compra entre grupos similares de de usuarios tienden a tener los mismos patrones.

En casos aplicados, almacenar los artículos que un usuario visualiza, qué tipo de correos electrónicos o campañas de marketing provocan clicks o usar sus cookies para aumentar la inteligencia en las recomendaciones son formas de pensar en algoritmos que nos puedan ayudar a generar un sistema de recomendación.

Es importante que en un inicio no queramos poner la vara tan alta si empezamos en cero.  Podemos comenzar trabajando en “batch”, es decir off-line, y cada 15 días actualizar el sistema de recomendación. A partir de los resultados podemos obtener mayor presupuesto y automatizar el flujo por completo.

Datlas_Promo_Facebook_Suscribe

3) Modelado de valor por vida (lifetime value) de usuarios

Datlas_LFTV

¿Cuál es la definición de “lifetime value”? Es una predicción del ingreso neto atributido a la relación futura con un cliente. En resumen, es el dinero que estimamos que un nuevo cliente nos pueda dejar a lo largo de la vida. Normalmente trabajamos este indicador de la mano del CAC (“Customer adquisition cost”). De esta manera una empresa como UBER o DIDI puede ofrecerte $150 MXN de viajes gratis porque sabe que hay una alta probabilidad de que en el primer año multipliquen por 10 el valor ($1,500 MXN de viajes en un año) una vez que descargues el app y sincronices tu tarjeta de crédito.

Fórmula:

(Valor de orden promedio) * (Número de ordenes repetidas) * (Tiempo que dura como cliente)

Este tipo de información puede ayudar para establecer objetivos de crecimiento de la página, optimizar estrategias de marketing, ajustar campañas y promocionales. Algunas empresas como Amazon o Rappi te proponen modelos como “prime” en donde te obsequian todas las entregas dado que eso representaría mayores incentivos para que seas su cliente durante más tiempo

4) Modelo de CHURN (identificar los clientes que puedes perder)

Datlas_Recomendacion_gif3

Así cómo podemos identificar de qué clientes podemos incrementar más la venta, también podemos identificar qué clientes son los que estamos a punto de perder. Un buen e-commerce administra métricas como: Número de clientes perdidos, % de clientes perdidos, valor de la pérdida de negocio recurrente, entre otros.

Si queremos trabajar en campañas de retención para disminuir el CHURN hay que primeramente identificar a los clientes. Normalmente lo hacemos por usuarios, pero también puede ser por su IP, atributos de pago (cuenta de paypal o últimos dígitos de una tdc o tdd) , horarios, comportamientos, entre otros.

Datlas_Promo_Podcast_Suscribe

5) Detección de fraudes

DatlaS_fraud

Finalmente, el fraude y los hackeos están a la vuelta de la esquina cuando se trata de negocios digitales. En E-commerce, el aprovechamiento y uso de tarjetas de crédito robadas para pagos por internet es uno de los casos de los que hay que prevenirse ¿Por qué? Por los contracargos. Esto es, en pocas palabras, una reclamación interpuesta por un tarjetahabiente ante el banco emisor por un cargo no reconocido a sus tarjetas. Como consecuencia el banco no le paga al comercio.

En una situación donde un ladrón de tarjetas roba datos, compra en mercadolibre, por ejemplo, el cliente afectado levanta un reclamo al banco, el banco no le paga a mercadolibre, pero mercadolibre ya había enviado la mercancia ¿Quién pierde? La respuesta es mercado libre porque esa mercancía que envío no va a ser pagada.

Existen en el mercado muchos motores antifraudes, tarjetas y listas negras, pero como e-commerce una empresa puede trabajar en su propia lista y mejor aún colocar un “puntuaje” a cada usuario que realice actividades sospechosas.

**Te puede interesar este blog donde escribimos las aplicaciones y casos de uso que podemos lograr si BANXICO o el gobierno libera listas de tarjetas que se reclaman por fraudes**

Datlas_Promo_Youtube_Suscribe

Hasta aqui la columna de hoy. Esperamos te haya servido y si estás considerando abrir un e-commerce o quieres conocer más sobre aplicaciones de analítica en estos canales de venta no dudes visitar nuestro marketplace y contactarnos para una llamada de brief.

Equipo Datlas

-Keep it weird-

 

Fuente de motivación:

https://towardsdatascience.com/5-data-science-project-every-e-commerce-company-should-do-8746c5ab4604