Archivo de la etiqueta: ventas

Lo que esconden tus datos: Análisis de CRM para mejorar precios, catálogos, marketing y ¡más!

La vida de un negocio son sus ventas. La complejidad es que las ventas son tanto arte como ciencia. Uno de los retos más comunes cuando trabajamos con empresas o grandes corporativos es el descifrar la fórmula para construir una estrategia comercial exitosa. Sin duda en estos tiempos esa fórmula se vuelve dinámica ante las circunstancias y son muchos los elementos a configurar. Por suerte la materia prima detrás de toda la parte “científica” de esto se encuentra en nuestro elemento favorito: los datos. En esta entrada vamos a platicar acerca de las distintas formas en las que los datos comerciales y de tu CRM se pueden usar para capitalizar mejoras en precios, catálogos, marketing, programas de descuentos y mucho más.free_Suscriber

Antes de comenzar es crucial entender un poco de historia. La gestión de la relación con clientes ha sido uno de los componentes más antiguos de los negocios. La infalible pluma y papel fueron suficiente en su momento para llevar el registro básico de las ventas y los clientes. En los años 50´s llegó el famoso Rolodex (se vale buscar en Google, yo también lo descubrí recientemente) que ofrecía la capacidad de girar los registros mientras añadías nuevos clientes y actualizabas la información de otros ya existentes. El siguiente gran paso se da a inicios de los 80´s cuando llegan las bases de datos a revolucionar el proceso de consolidación de la información de los clientes, aunque a finales de esa década el aprovechamiento de estas bases de datos era aún limitado, figuraba tan solo como un directorio o Rolodex digital, con pocos insights y casi nulas interacciones de la compañía con sus clientes. Hasta inicios de los 90´s comienza la automatización de los procesos de ventas y justo en 1995 se acuña el termino Customer Relationship Management o CRM, por sus siglas en inglés. A partir de esa década comienza la profundización en los análisis y una gestión mucho más detallada e inteligente de la relación con los clientes.

El pase de diapositivas requiere JavaScript.

Ahora bien, el CRM perse es una herramienta tecnológica pero su punto de partida, como en todo, son los datos que se alimentan en él. En este sentido la primera etapa importante antes de analizar los datos comerciales y de CRM es precisamente generarlos. Dentro de esta etapa de recolección de datos es importante establecer los procesos de negocio en donde interactúas con tu cliente y se abre la posibilidad de ese intercambio de datos o de información. Asimismo, es crucial que como negocio definas los datos “necesarios” y los datos “deseados” que buscas obtener de tus clientes para poder comenzar a llenar este CRM. Finalmente, debes establecer una mecánica de incentivos para poder propiciar de manera natural y benéfica para ambas partes el hecho de compartir estos datos.

Vamos a aterrizarlo en un caso de negocio. Eugenio, uno de nuestros clientes dentro de la industria energética, nos pidió apoyo para generar su estrategia go-to-market de su nuevo panel solar. Esta claro que analizamos sus datos comerciales y de su CRM, pero lo interesante aquí es resaltar los 3 atributos que mencionamos en el párrafo anterior. Eugenio tenia claro que uno de sus procesos de negocio mas importantes era el hecho de la interacción del cliente en su página web, dado que por la naturaleza del producto y el servicio que lo acompaña, el anaquel digital resultaba muy relevante. Después estableció que los datos que necesitaba obtener del cliente eran su ubicación y el consumo promedio de luz, aparte de los datos de contacto. Fue así como se le ocurrió armar una “calculadora de ahorro” dentro de su sitio web como un incentivo para que el cliente pudiera compartir estos y otros datos a cambio de un beneficio directo que era el calculo del monto estimado de ahorro que podía obtener con el nuevo panel solar que se estaba ofreciendo.

datlas_mx_blog_crm_customer_master_data_management-01

Hasta aquí se ha logrado establecer una dinámica para obtener los datos, el paso siguiente es precisamente adentrarnos en los datos. Cuando estamos analizando datos comerciales y de CRM es importante hacer un diagnostico y establecer el inventario completo de variables con el que vamos a estar trabajando, es decir, a pesar de que para un negocio un medio de contacto sea el teléfono, para otro podrá ser el correo electrónico o incluso ambos. En este sentido el punto de partida es entender muy bien la base de datos, las variables con las que vamos a estar “jugando” y comenzar a establecer algunas categorías de datos como, por ejemplo: perfil, canal fuente, dinámica. En el caso de Eugenio por ejemplo cuando hablamos de la categoría perfil estamos agrupando todos los datos que hablan del cliente como, por ejemplo: su nombre, su correo, su teléfono, el lugar donde vive, etc. Cuando hablamos de canal fuente estamos hablando de la forma en la que conoció y se entero de la empresa, como llego, si tuvo algún costo esa publicidad por la que se enteró, etc.

Finalmente, en la categoría de dinámica es necesario hacer una profundización todavía más importante ya que nos referimos a los datos que distinguen y diferencian a los clientes a lo largo de las etapas del proceso o ciclo de ventas. En este caso cuando hablamos de proceso o ciclo de ventas es relevante comprender la metodología que esta utilizando el negocio. Sabemos que existe mucha literatura, estudios y propuestas acerca de ventas, procesos y ciclos, algunas de 5 pasos, 7 etapas, 9 fases, etc. Aquí lo esencial es entender la forma en la que el negocio distingue entre un cliente que esta en la etapa 1 y como es que pasa a estar en la etapa 2, por ejemplo. En el caso de Eugenio, ellos tenían una gestión muy sencilla con 3 grandes etapas: lead, prospecto y cliente (o venta). En su equipo definieron un lead como todo aquel individuo que haya mostrado interés en su producto a través de compartir su información. Esa persona no podía pasar a la etapa de prospecto si no habían ocurrido 3 cosas: había entrado en contacto con un representante de ventas, había aceptado que se le generara una cotización y ya se le había generado y comunicado esa cotización. Finalmente se convertía en cliente (o venta) una vez que aceptada dicha propuesta o cotización y se generaba la factura de venta. De esta manera, se logra una claridad en cuanto a los datos que permite entender a quien realiza el análisis donde buscar y que datos utilizar al momento de atacar los distintos retos o hipótesis que se planteen al inicio del ejercicio.

El pase de diapositivas requiere JavaScript.

En cuanto se tiene claro los datos y las estructuras del CRM y la información comercial es momento de apalancarla para atacar los retos del negocio. En este caso, por ejemplo: mejorar precios, catálogos, marketing y programas de descuentos.

En el caso de mejoras o cambios en precio, tomando como ejemplo a Eugenio y su negocio, es de suma importancia poder apalancar los datos que tienen que ver directamente con la conversión, es decir, con la parte del proceso en el que pasa de prospecto a cliente. Lo que se hace aquí es agrupar a aquellos individuos que hayan tenido como principal indicador de “no conversión” un tema del precio y utilizar los datos del CRM para generar una segmentación. Ahora bien, cuando nos referimos a segmentación no estamos hablando del típico hombre/mujer, edad, etc. Sino un tema de necesidades, es decir, hay que descifrar que nos pueden decir los datos acerca de la necesidad o el beneficio percibido por el cliente en contraste con el precio. Por ejemplo, en el caso de Eugenio, ellos tenían claro el consumo promedio, con lo que pudieron hacer un análisis y encontraron una correlación entre consumo promedio y el precio estándar del nuevo panel, de tal forma que se dieron cuenta que para el punto de precio del nuevo panel el segmento de clientes al que debían dirigirse se distinguía por tener una necesidad de ahorro a partir de cierto consumo. ¿Y eso que con el precio? Precisamente estos insights permitieron que se buscaran alternativas para generar productos con un punto de precio más bajo para ese segmento detectado o incluso explorar alternativas como financiamientos, arrendamientos o planes de pagos que pudieran tener un impacto indirecto en la percepción del precio por parte del cliente.

datlas_mx_blog_crm_pricing

Por otro lado, en el tema de mejoras al catálogo de productos el acercamiento al reto debe darse de forma distinta. Retomando el ejemplo de Eugenio y su negocio, para este punto estaríamos enfocándonos en analizar los datos dentro de las etapas de lead y prospecto, para destacar cuales fueron aquellos productos en los que las personas mostraron más interés. Igualmente cabe la posibilidad de una segmentación por necesidades. Si analizamos, por ejemplo, las palabras claves o los anuncios utilizados en las campañas de generación de leads y las cruzamos con términos relacionados nos podríamos dar cuenta, como Eugenio, que existe un particular segmento de clientes que no solo está interesado en paneles, sino que en el contexto de su búsqueda esta preocupado por el medio ambiente, busca alternativas de energía sustentables, renovables, etc. De tal suerte que pudiera explorarse, haciendo quizá un A/B testing, la forma de incluir dentro del catalogo de productos unos focos o bombillas de tecnología lead ya que consumen menos energía, iluminan más, etc. De esta forma hay un impacto directo en el catalogo de productos.

datlas_mx_blog_consultoria_crm_catalogo

Finalmente, para el tema de marketing, que sin duda es todo un universo y un mundo en sí mismo, existen bastantes formas de apalancar los datos comerciales y del CRM para enfocar mejor las campañas de mercadotecnia. En el caso de Eugenio, e incluso para nosotros, la información de la fuente desde la que se genero ese lead ha sido muy importante para discriminar entre los distintos canales de difusión y marketing. Igualmente, los datos del perfil del cliente nos han ayudado a definir áreas geográficas, zonas, regiones en donde enfocar puntualmente las campañas. Complementando con el punto anterior y apalancando incluso también información de la fase de cliente (o venta) se pudieran analizar atributos o características claves que el cliente percibe y expresa acerca del producto como para ajustar los mensajes, las frases y los anuncios en términos de lenguaje, beneficios a comunicar y formas de realizar el acercamiento.

Así que estas son algunas de las formas en las que hemos apoyado a nuestros clientes a aprovechar toda la información comercial y de su CRM para generar mejoras que impacten en los resultados de su negocio. Si estas interesado en explorar algo como esto te invitamos a visitar nuestro Marketplace y agendar una sesión con nosotros para platicar al respecto y ver la forma en que pudiéramos ayudarte.

Hasta aquí la columna de hoy, gracias y no dejes de compartirnos tu opinión en redes sociales

@DatlasMX

 

¿Cómo segmentar mi mercado usando mapas? – Datlas Caso de Uso

Hace un par de columnas comenzamos esta sección de casos de uso de nuestros clientes utilizando los mapas Datlas. En la primera edición platicamos acerca de la prospección de clientes. Si no has tenido oportunidad de leerla, te invitamos a dar click aquí. En esta ocasión nos enfocaremos en un nuevo caso de uso: segmentación de mercado. Seguramente si has llevado clases acerca de mercadotecnia o ventas sabrás que segmentar el mercado se refiere a la actividad de dividir a toda una masa critica en grupos con características similares para poder enfocar los esfuerzos de venta de tu producto o servicio. En esta columna les platicaremos acerca del caso de Carlos, uno de nuestros clientes en Ciudad de México. Charlie tuvo la oportunidad de acondicionar un local comercial que tenia su familia en una buena zona y puso una pizzería, pero con el nuevo concepto de “dark kitchens”, es decir, sin tener un frente con atención a clientes, solo dedicándose a la parte de entregas a domicilio a través de todas estas nuevas plataformas. Contrario a su expectativa inicial, no logró capturar suficientes clientes durante las primeras semanas y fue entonces que se le ocurrió usar Datlas para conocer el mercado a su alrededor y poder segmentarlo para hacer promociones.

free_Suscriber

Para este ejercicio vamos a usar el mapa Premium de Ciudad de México, disponible en nuestro Marketplace. Una vez adquiriendo el mapa puedes accesarlo a través de tu panel personalizado.

El pase de diapositivas requiere JavaScript.

Una vez dentro de la plataforma el paso #1 es identificar la ubicación de tu negocio. En este caso la pizzería de Carlos se encontraba en la Condesa, sobre Avenida Michoacán.

datlas_mapa_premium_cdmx_ubicacion

Enseguida, el paso #2 es definir/conocer el radio de influencia de tu negocio. En el caso de los restaurantes, la naturaleza propia de su servicio les da la ventaja de poder definir su radio de influencia, es decir, delimitar perfectamente su zona de cobertura para envíos a domicilio. En contraste, negocios del sector retail por ejemplo, muchas veces necesitan conocer o descubrir su radio de influencia y calcularlo con base al numero de competidores en su entorno y la distancia que pueda haber entre ellos. De todas maneras, dedicaremos una columna específicamente para el tema de radios de influencia. Por el momento, regresando al caso de Charlie, se definió que la operación de la pizzería podría atender a un mercado de hasta 2 kilómetros a la redonda.

Siendo así, se utiliza la herramienta de análisis que vienen en la barra lateral derecha dentro de la plataforma. Una vez seleccionada nos pedirá elegir la forma de delimitación que vamos a utilizar. Existen varias opciones dentro de las cuales destaca el análisis radial, rectangular o en base a selección específica de polígonos. Para el caso de Carlos se utilizó el análisis radial. La forma en la que esta herramienta funciona es dando click justo en la ubicación definida en el paso #1 y abriendo el radio hasta la distancia definida en el paso #2.

El pase de diapositivas requiere JavaScript.

Una vez establecido el radio de influencia el paso #3 es obtener los resultados para analizarlos. Como ya saben, los resultados arrojan variables demográficas, socioeconómicas, comerciales y hasta dinámicas. De esta forma Carlos puede saber cuanta gente hay dentro de ese radio de influencia, sus características, poder adquisitivo, cantidad de negocios, generadores de tráfico y mucho más.

En este caso destacaron varios hallazgos claves:

  1. La mayoría de la población son mujeres
  2. La mayoría de la población es soltera, aunque viven en hogares de 2-3 personas
  3. La mayoría de la población tiene más de 32 años
  4. Hay más de 11,000 negocios, predominantemente micronegocios de 0 a 5 trabajadores y los sectores más relevantes son: comercial, servicios profesionales e industrial

El pase de diapositivas requiere JavaScript.

Finalmente, el paso #4 es generar los segmentos claves para definir estrategias para cada uno. En este caso Charlie hizo dos grandes segmentos: hogares y negocios. Para capitalizar la oportunidad en los hogares, enfocó sus campañas y promociones a las mujeres mayores de 30 años e hizo un tamaño de pizza especial para 2-3 personas, con sus respectivas promociones y combos.

Para el segmento de negocios, se lanzó a realizar alianzas estratégicas con algunos comercios de alrededor y comenzó a empujar una tradición similar a los “viernes de tacos”, pero llamada “jueves de pizza”. Igualmente les ofreció programar pedidos para que no tuvieran que esperar a las horas pico de comida para solicitar su comida y así ahorrar tiempo y esfuerzo. También les ofreció formatos de pizza y complementos tipo botanas/canapés para los días de juntas y pequeños eventos internos. Finalmente les ofreció descuentos especiales para los trabajadores que hacen “horas extras” en sus pizzas y productos más rentables.

free_Suscriber

De esta forma, en tan solo algunas horas, Carlos fue capaz de segmentar su mercado, generar un par de estrategias y comenzar a ejecutarlas de manera que en un par de semanas comenzó a ver resultados e incluso los clientes comenzaron a darle retroalimentación y nuevas ideas para seguir aumentando el menú y mejorando el servicio.

Si crees que ya estas listo para ponerte manos a la obra y segmentar tu mercado para mejorar los resultados de tu negocio puedes ir directamente a nuestro Marketplace y aprovechar el código de descuento BLOG100 para obtener $100 MXN de regalo en tu primera compra de cualquiera de nuestros mapas Premium.
De esta manera concluimos el blog de hoy, mantente atento a todos los nuevos casos de uso, videos y nuevos lanzamientos que tendremos para ti.

@DatlasMX

¿Cómo encontrar clientes potenciales usando mapas? – Datlas Caso de Uso

Hace un par de años cuando le contábamos a la gente que hacíamos análisis de datos con mapas se nos quedaban viendo extrañados. Y es que la historia nos enseñó que el uso común de los mapas era para navegación, establecer rutas, indicar direcciones. Pero hoy en día la disponibilidad de datos geo referenciados (asociados a un punto geográfico, un punto en el mapa) nos ha permitido utilizar los mapas para realizar análisis más complejos, incluso de variables ajenas a temas de tráfico y navegación. En esta columna te vamos a explicar cómo puedes utilizar el mapa Premium de Datlas para encontrar nuevos prospectos, justo como lo han hecho nuestros clientes. Quédate hasta el final y obtén una sorpresa que te ayudará a adquirir tu licencia premium de inmediato e iniciar hoy mismo a prospectar nuevos clientes potenciales.

free_Suscriber

El proceso es muy sencillo, no importa si vendes productos o prestas servicios, el paso #1 es: la delimitación geográfica. Estamos seguros de que tu producto es único y tu servicio es inigualable, que pronto todo el mundo se va a pelear por adquirirlo, pero analizar todo un continente o un país te puede provocar dolores de cabeza. Es por ello que en DATLAS hemos dividido nuestros mapas por estados. Por lo tanto, debes elegir el estado en el que se encuentra la zona donde te quieres enfocar para encontrar a tus prospectos. Para ejemplificarlo de forma sencilla usaremos el caso de Carolina, una joven que vende repostería a través de redes sociales, principalmente en Monterrey. Ella estaba buscando expandir su mercado y comenzar a vender en San Pedro Garza García. Por lo tanto, la plataforma que vamos a utilizar para este ejercicio será el Mapa Premium del estado de Nuevo León, disponible en nuestro Marketplace.

datlas_marketplace_mapa_premium_NL

Una vez definida la geografía que vas a analizar, el paso #2 es: definir el perfil de tu cliente objetivo (o mercado meta). Si eres dueño o parte de una organización que tiene años operando, será mucho más sencillo ya que conoces las características generales de tus clientes actuales y con ello puedes establecer un perfil con ciertos atributos a buscar. Por otro lado, si eres un emprendedor que está iniciando su negocio definir el perfil del cliente objetivo será un ejercicio distinto, basado en el problema que resuelves y el tipo de solución que has diseñado. Para el caso de Carolina ella definió a su cliente objetivo como: mujeres entre los 24 y 31 años de edad, con estudios universitarios o superiores, que tuvieran una capacidad de pago de $1,000 MXN o más.

datlas_mkdo_meta_perfil

Una vez definida la geografía de enfoque y el perfil de cliente que buscas es momento de entrar en la plataforma. Si has tenido la oportunidad de probar nuestro DEMO seguro sabrás como navegar y que atributos están disponibles, si no es así te invitamos a suscribirte para tener conocimiento de algunas de las variables y herramientas que estaremos comentando.

Una vez dentro de la plataforma fácilmente podrás reconocer que los polígonos que aparecen al inicio son interactivos y que al dar click en ellos se revela un pop-up del lado izquierdo con alguna información relevante. Y es justo ahí en donde podrás encontrar la información demográfica y socioeconómica que en este caso Carolina estaba buscando.

datlas_mapa_premium_nl_popup_poligono

Ahora bien, ya identificaste donde está la información ¿qué sigue? ¿checar uno por uno todos los polígonos? ¡Por supuesto que no! para eso hemos habilitado la herramienta llamada búsqueda específica que se encuentra justo en la barra lateral derecha. Esta herramienta te permite establecer un área dentro del mapa y buscar aquellos polígonos que cuenten con características específicas, como por ejemplo mujeres de 24 a 31 años.

datlas_mapa_premium_nl_busqueda_especifica

Una vez identificada la herramienta el siguiente paso es establecer los criterios de búsqueda. En este caso podrás observar que los rangos de búsqueda para variables como “Mujeres” (cantidad de mujeres) desde 0 hasta un máximo (ej: 1547). En el caso de Carolina, podemos hacer un cálculo simple para establecer la cantidad de mujeres que necesitaría encontrar: si Caro quisiera atender 3 bodas cada fin de semana del mes estaría buscando generar 12 clientas. Si su porcentaje de conversión es del 10% eso quiere decir que debe estar buscando una zona con 120 clientas potenciales (prospectos). Siendo así el criterio de búsqueda para el tema de mujeres debería tener como mínimo 120.

free_Suscriber

Ahora bien, Caro no solo busca mujeres, sino mujeres de cierta edad, así que el segundo paso sería establecer un rango para las edades de 25 a 31. Es importante notar que los datos de edades son agregados, es decir, contemplan tanto a hombres como mujeres por lo que un cálculo simple pudiera ser el siguiente: navegando en la plataforma notamos que la mayoría de las veces la proporcionalidad de hombres y mujeres es de alrededor de 50-50% por lo tanto, usando esta simple regla de dedo, si queremos encontrar 120 mujeres y el rango de edades contempla hombres y mujeres, pudiéramos establecer un mínimo de 240 para la variable de edad de 25 a 31.

Finalmente, Caro buscaba que tuvieran una capacidad de pago de $5,000 MXN o más. Aquí es importante contextualizar. El dato socioeconómico que manejamos es el de ingreso promedio, por lo tanto, si buscamos que sean personas dispuestas a gastar $5,000 MXN en su organización de bodas habría que buscar que su ingreso promedio sea superior a esta cantidad. Para simplificar el ejercicio, en este caso, lo haremos buscando ingresos de $10,000 MXN o más.

El pase de diapositivas requiere JavaScript.

Finalmente, el resultado es muy simple: en color rojo verás todos aquellos polígonos dentro del área que has establecido, pero que no cumplen con los criterios de búsqueda. Por otro lado, los polígonos en color amarillo serán aquellos que cumplen con las características establecidas. De esta forma puedes identificar rápidamente las zonas en donde se encuentran tus prospectos. Con esto, Caro, tú y todos nuestros clientes pueden accionar campañas enfocadas, realizar trabajo en campo de una manera focalizada o muchas otras estrategias para capitalizar a ese mercado meta que ya has podido encontrar.

datlas_mapa_premium_nl_busqueda_especifica_resultado

Recuerda que esta es solo una de las multiples herramientas de análisis que integran nuestros mapas. Puedes combinar el uso de distintas herramientas para realizar análisis más complejos, comparar los resultados en distintas zonas y mucho más.

Puedes probar este ejercicio y todos los demás detalles suscribiéndote en nuestra pagina y probando la versión DEMO.

Si crees que ya estas listo para ponerte manos a la obra y captar más prospectos puedes ir directamente a nuestro Marketplace y aprovechar el código de descuento BLOG100 para obtener $100 MXN de regalo en tu primera compra de cualquiera de nuestros mapas Premium.

free_Suscriber

De esta manera concluimos el blog de hoy, mantente atento a todos los nuevos casos de uso, videos y nuevos lanzamientos que tendremos para ti.

Siguenos @DatlasMX