Clustering para generar segmentos de mercado – Datlas Research

Como lo platicamos en “La historia de las tecnologías de información computacional” desde que el poder de cómputo ha incrementado hemos buscado formas de generar análisis más completos y asertivos para nuestros casos de estudio.

Datlas_barra_suscribir

Uno de ellos es el análisis de clúster que es una técnica estadística multivariante cuyo objetivo es formar grupos de elementos homogéneos o similares que al mismo tiempo sean heterogéneos o distintos entre sí. ¿En español y negocios? Hay casos en donde generar una estrategia para cada cliente puede ser costoso, pero si agrupamos a estos clientes en segmentos podemos impactar a grupos similares con estrategias puntuales.

En esta columna explicaremos un caso de ejemplo de clustering para generar segmentos de clientes. Los datos que revisaremos vienen de encuestas levantadas con visitantes al festival Luztopia. (Si te interesan sólo los resultados favor de pasar al final de la columna). El objetivo identificar segmentos de asistentes específicos al festival para la ideación y generación de mejores promociones el próximo año.

El pase de diapositivas requiere JavaScript.

Para ser justos hay que explicar que existen distintos tipos de análisis para generar estas agrupaciones o clústers. Los dos grandes grupos son: No jerárquicos y jerárquicos. En este caso en particular usaremos uno de los métodos  no jerarquicos. Lo que quiere decir que un clúster generado no depende de otro clúster, son independientes.  Dentro de los no  jerarquicos utilizaremos los asociados al algoritmo “k-means”, que está dentro de la familia de los no jerárquicos. Este algoritmo usa de inicio medias aribtrarias y, mediante pruebas sucesivas, va ajustando el valor de la misma. La idea es no ponernos más técnicos, pero si te interesa conocer más a detalle te recomendamos revisar la p.23 de este documento. En pocas palabras k-means nos apoyará ensamblando clústers de perfiles que sean similares entre sí, pero a la vez diferentes entre cada grupo.

BASE DE DATOS

La información que revisaremos son un par de encuestas que incluyen datos como los siguientes:

Datlas_blog_clustering2

En concreto usaremos para armar los clústers las variables numéricas, tales como: Edad de personas que respondieron, tamaño de su grupo, cantidad de menores de 18 en el grupo, gasto en cena, gasto en productos dentro del recorrido, gasto total estimado y tiempo de estancia en el evento. Para quienes han analizado datos similares ya se podrán imaginar el tipo de respuestas que podremos generar: ¿Cuáles son los perfiles que más visitan? ¿Qué perfiles gastan más en su recorrido? ¿Habrá relación entre los visitantes que van con niños y su compra en cenas? ¿Extender el recorrido en tiempo haría que las personas consuman más cenas? Entre otros.

Este es el tipo de respuestas que generamos en los reportes que trabajamos en Datlas, sin embargo para fines de esta columna nos ubicaremos en el ejercicio de clústers buscando generar segmentos para los cuales podamos generar nuevas promociones.

MÉTODO

Un paso que algunos analistas descuidan es el proceso de “normalizar” datos. Una vez que empiezas por el camino de #machinelearning va a ser un paso que será muy común.  “Escalar” es un proceso de redimensión de variables para que estas se encuentren entre rangos de -5 a 5, por ejemplo. Este proceso ayuda a centrar los datos alrededor de la media.  Estos métodos tienen área de oportunidad cuando tenemos anomalías, pero en este caso dado la distribución de las variables hacía sentido escalar. A continuación un contraste del proceso.

El pase de diapositivas requiere JavaScript.

A partir de este proceso generamos una matriz de distancia entre las variables. Esto nos indica en rojo los registros de variables, en este caso visitantes a Luztopia, que son más distintos en perfiles y hábitos de consumo. Aunque realmente es complicado leerlo así. Por lo mismo es un paso intermedio

Datlas_matriz_Distancia_Cluster

Un siguiente paso es hacer una primera iteración de clústers. En esta ocasión supervisamos al algoritmo para que nos entregue de regreso 4 clústers. Cada punto que vemos en la gráfica es una encuesta respondida por la muestra de visitantes que estamos evaluando. En el clúster 1, por ejemplo, pudieran ser todos los visitantes que asistieron con niños a Luztopia. Eso genera una diferenciación tan crítica, que separa este clúster de los demás. Sin embargo los otros clústers se traslapan.

Datlas_ClusterPlot_4

Lo ideal es que el traslape sea mínimo o nulo. En este sentido podemos retar la cantidad de clústers que le pedimos al sistema generar. Para esto podemos usar un proceso que nos recomienda la cantidad de clúster óptimos.

Datlas_optimal_Clusters

De acuerdo a este proceso 2 son los números ideales y óptimos de clústers. También lo serían 5 ó 6, pero en realidad manejar estrategias de negocio para tantos grupos puede ser complicado. Por esta razón seleccionamos 2 como caso de uso.

Datlas_ClusterPlot_2

Finalmente, para poner en práctica nuevas estrategias de negocios, podemos identificar cuáles son las medias de cada una de las variables, cómo contrastan los clústers y algo que recomendamos es generar “avatars” o “buyers personas” que permitan comunicar hacia dentro de la organización la manera de trabajar.

TESTIMONIO

Hasta aqui la columna de hoy. Te compartimos finalmente el testimonio de nuestra colaboración con el “Clúster de Turismo NL” donde usamos técnicas como estas para generar distintos entendimientos del festival Luztopia. Además puedes revisar el podcast que grabamos con ellos si te interesa “Analitica en sector Turismo”.

 

Si te interesa conocer y contratar este tipo de servicios de “Clustering sobre resultados de encuestas o investigaciones para generar segmentos y seleccionar los mejores mensajes para tu mercado” te recomendamos visitar nuestro marketplace y solicitar una llamada de orientación. Contáctanos también en ventas@datlas.mx

Datlas_barra_suscribir

Saludos

Equipo @DatlasMX

– Keep it weird-

 

2 comentarios en “Clustering para generar segmentos de mercado – Datlas Research”

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .