A finales de mayo escribimos una columna en donde establecimos los 5 pasos para aprovechar los datos de tus puntos de venta. Dentro de este proceso el paso #1 eran precisamente los datos, mientras que los siguientes pasos se enfocaban en como transformar estos datos en información y de ahí derivar insights para establecer accionables. En esta ocasión vamos a profundizar en ese primer paso, para hablar de la forma en la que un buen diagnóstico de tus bases de datos, una radiografía, puede ayudarte a preparar los datos para realmente aprovechar y capitalizar al máximo durante los siguientes pasos del proceso de aprovechamiento.
Así que comencemos, cuando hablamos de bases de datos nos referimos a ese repositorio de registros que tiene el negocio con el récord de los distintos hechos y sucesos que acontecen durante su quehacer diario. ¿Más fácil? Imagínate una hoja de cálculo en Excel con columnas y filas llenas de datos como: nombre del cliente, producto que compro, precio, etc. Ahora bien, el hecho de capturar la información y tenerla digitalizada sin duda es un primer paso, pero muchos negocios en la actualidad creen que eso es suficiente, como si la transformación digital y las nuevas tecnologías como big data o inteligencia artificial se trataran solo de tener datos y de tenerlos digitales. La realidad es muy distinta, sin duda tener los datos es importante, pero su calidad y su estructura son cruciales para poder capitalizar todos los beneficios que esconden. Para dejarlo más claro, imagínate que llegas a un lugar y pides una silla para poder sentarte, la persona a la que se la solicitaste te responde que efectivamente existe una silla y te la trae, pero de pronto cuando te sientas la silla se vence y caes al suelo. ¿Dónde estuvo el detalle? Precisamente en la calidad y estructura de la silla, es decir, no hace falta simplemente tener lo necesario, sino asegurarnos que eso que tenemos puede soportar y capitalizar las exigencias a las que lo vamos a someter.
Así que ¿por dónde empezar? Lo primero es hacer una pausa, un corte y generar el listado completo de variables que maneja el negocio. En nuestro idioma, cuando trabajamos con un cliente, a esto le llamamos generar un glosario de variables. Esto le permite tanto al negocio como a nosotros entender la situación actual, la radiografía, el estatus. Ahora bien, este listado no es simplemente enumerar y nombrar cada dato o variable, sino realmente diseccionar cuestiones como: el tipo de variable, la periodicidad con la que se actualiza, la categoría a la que pertenece dentro de los procesos del negocio o de los atributos que analiza la compañía, el formato con el que se registra, entre otros. Un caso práctico lo vivimos a finales del año pasado trabajando con Andrés, dueño de una cadena de restaurantes con presencia en Monterrey y Playa del Carmen. Cuando Andrés llegó con nosotros con el reto de generar nuevas iniciativas de inteligencia para su negocio, lo primero que preguntamos fue precisamente “¿Qué datos tienen?” y después de un largo silencio concluimos que era necesario hacer el diagnostico.
Al construir el glosario de variables nos dimos cuenta de algunos detalles interesantes como, por ejemplo: registros con problemas ortográficos, formatos de fecha distintos entre cada sucursal (una registraba día/mes/año y otra lo registraba como año/mes/día), había productos que se registraban por peso mientras otros eran registrados por unidad o paquete, etc. Este primer gran paso nos permite hacer lo que un doctor, guardando sus proporciones, diagnosticar y entender que es lo que tenemos que hacer.
Una vez que entendimos los datos en su mayor granularidad y esencia, el siguiente gran paso del diagnostico es evaluar la estructura que guardan esos datos dentro de la infraestructura de la empresa. ¿En español? Tomamos el glosario de variables y nos metemos a las entrañas del negocio a ver literalmente la base de datos donde duerme cada uno de esos datos. La clave en este punto es entender si el acomodo, literal, de filas y columnas es el ideal para generar las manipulaciones y los tratamientos necesarios para generar inteligencia. Volviendo al caso de Andrés, como ejemplo, el dato de ventas se registraba en una base de datos que tenia a los clientes (un cliente por fila) y se iba llenando cada transacción (venta) por columna, es decir, si un cliente había comprado 5 veces tenias una base de datos con una fila (el nombre del cliente) y 5 columnas (una con cada fecha de compra). Claramente esta es una estructura difícil de manipular si te pones a pensar en generar analíticos descriptivos como la cantidad de veces que ha comprado dicho cliente o el total de clientes que han comprado 2 veces o más, por ejemplo. De esta forma, este segundo acercamiento nos permite diagnosticar la forma en la que el dato debe guardar una relación con la estructura de la base donde se esta registrando y guardando para poder capturar su potencial de análisis.
Finalmente, el paso decisivo del diagnóstico es evaluar la relación que guardan las distintas bases de datos del negocio. Si te fijas, nos hemos ido desde lo más particular, que es el dato, pasando por lo más agregado que es la base de datos y hemos llegado a lo más general que es la relación de estas bases dentro de los procesos de negocio. Esta perspectiva esconde los últimos “síntomas” que necesitamos saber para poder dar un diagnóstico certero. En esta etapa lo que buscamos es entender la forma en la que las bases de datos se conectan entre ellas para contar la historia de cada dato enlistado en la parte del glosario. Lo importante es encontrar los datos conectores, es decir, aquellos datos claves que nos ayudan a interconectar una base con la otra. El ejemplo más claro, en el caso de Andrés, es la forma en la que el dato de cebollas dormía en una base de datos de recetas, donde cada receta tenía un identificador único (ID) que a su vez se conectaba a los datos de las ordenes que el mesero tomaba y enviaba a cocina para su ejecución y finalmente ese mismo identificador servía para descontar de la base de datos de inventarios los productos y la cantidad correspondiente. Se lee mucho más complicado de lo que es, pero el mensaje es muy sencillo y claro, entender la forma en la que se comunican las bases es clave para poder hacer un diagnóstico completo.
De esta forma, siguiendo la analogía del doctor, podemos darnos cuenta fácilmente en que parte se encuentra el verdadero “dolor” e ir a tomar acciones puntuales sobre cada uno de ellos. En el caso de los datos, por ejemplo, las soluciones son claras: limpieza, clasificación o exploración de fuentes de generación de datos para capitalizar nueva información. En el tema de la base de datos individual donde duerme el dato las alternativas son: reestructura u homologación. Para la parte de la comunicación entre bases de datos lo que se puede hacer es: generar variables de identificación única, optimizar la interconexión entre bases de datos o replantear el diseño de consultas (querys). Con todo esto el negocio esta listo para poder capitalizar sus datos y generar inteligencia, que se traduce en mejor gestión de procesos, segmentación de clientes, mejoras a la oferta, ajustes de precio, control de inventarios y mucho más.
Así que ya lo sabes, si quieres aprovechar la generación de datos de tu negocio lo primero es realizar un diagnóstico. En Datlas estamos a tus ordenes para apoyarte, como a Andrés, en este proceso de descubrimiento para poder descifrar todos los beneficios que se esconden en tus bases de datos.
@DatlasMX
Pingback: 1 mes usando la mac mini apple (2020) para data science y edición de multimedia – datlas | Blog de www.datlas.mx