SISTEMA ILUO para matriz de habilidades de departamentos de datos en organizaciónes – investigación datlas

Generar proyectos y áreas de datos exitosos está directamente relacionado al capital humano. Es decir, para poder avanzar con proyectos de analítica que abonen a la transformación digital de nuestras organizaciones es necesario mapear y desarrollar talento. Pero ¿Cómo lograrlo de manera ágil y sencilla? En esta columna hablaremos del sistema ILUO que nos permitirá monitorear las habilidades dentro de nuestro equipo de datos.

** Te podrá interesar ¿Cómo detectar un impostor de datos?

Como ejemplo, estas habilidades para un departamento de datos en una organización de mediano tamaño

El objetivo del sistema ILUO es desarrollar y administrar habilidades dentro del equipo a nivel departamento (No a nivel individual).

Dentro de una matriz se coloca los miembros del equipo del lado izquierdo, las habilidades en la parte superior y dentro de la matriz se categoriza con respecto al dominio de cada habilidad por miembro del equipo.

Las siglas ILUO tienen un significado gráfico y representan el avance que se va teniendo en el desarrollo de los empleados de la organización. La cantidad de líneas que forman cada letra indica el nivel de madurez de cada empleado. Los cuatro niveles de habilidad ILUO indican:

Nivel I: Aquellas personas que se encuentran en capacitación para conocer y cumplir con su tarea, sin intervenir en los procesos.

Nivel L: Aquellas personas que ya intervienen en los procesos, pero no están calificadas para operar sin supervisión.

Nivel U: Aquellas personas que ya están acreditadas para cumplir con su tarea bajo los estándares y el tiempo requerido.

Nivel O: Aquellas personas que ya han acreditado todos los niveles de habilidad y recibieron una certificación para poder formar a otras personas.

**Te podrá interesar «Los 5 perfiles para un equipo de Datos»

¿Qué pasos hay que seguir para desarrollar una matriz de habilidades en un equipo de Datos?

  1. Identifica y enlista las habilidades de tu departamento de datos
  2. Enlista el «staff» en los renglones de la matriz
  3. Identifica del 1 al 5 el mayor nivel en que cada miembro del equipo se desarrolla en esa habilidad
  4. Una vez que tenemos calificadas estas habilidades, hay que presentárselo al líder de equipo y desarrollar un plan de acción (Capacitación, nivelación, apoyos, entre otros.)
  5. Finalmente comprometer fechas y dar monitoreo constante

** Te podrá interesar «¿Por qué pueden fracasar los proyectos de datos?»

¿Cuáles son las ventajas de implementar el sistema ILUO?

·Incrementar la calidad de sus productos y/o servicios

·Reducción de desperdicios

·Mejorar la satisfacción de sus clientes internos y externos

·Lograr la continuidad operativa

·Se elimina o reducen ausentismo y rotaciones

·Aumenta la motivación de los empleados

·Desarrolla el sentido de pertenencia hacia la organización

** Te puede interesar nuestra columna sobre «Diseño de perfiles para áreas de analítica»

Hasta aqui la columna de hoy, te invitamos a continuar aprendiendo en nuestro podcast y a suscribirte a nuestra nueva iniciativa en Datlas Academy donde obsequiaremos algunos cursos para mantenernos a la vanguardia en temas de transformación digital.

Fuentes

https://www.leanconstructionmexico.com.mx/post/sistema-iluo-qu%C3%A9-es-y-como-implementarlo-ejemplo-de-matriz-iluo

arquitectura de proyectos de datos (Data warehouses, vs Data lake vs Data mart) – Datlas manuales

Cuando vemos una casa bonita, con buena arquitectura , jardinería bien cuidada e iluminación en su punto lo que menos nos preocupa es cómo está la casa en su plomería y en los cables que hacen que esa iluminación y jardín se vean de primera. Al final tenemos contacto con los interiores y la fachada de la casa ¿Por qué debería de importarme? Bueno si en lugar de una casa habláramos de una plataforma increíble de mapas o dashboard… seguramente tendríamos que entender cómo funciona para poder construir uno para nosotros igual de funcional.

En esta columna hablaremos de la arquitectura para proyectos de datos y cómo funciona la plomería que hace viajar los datos desde su fuente hasta los puntos de consumo por los usuarios.

¿El contexto para el «aprovechamiento de los datos» ?

Desde hace un par de años decidimos comenzar nuestros diálogos sobre data science en foros nacionales con un gráfico así. Nuestra urgencia era comunicar por qué les debería de importar aprovechar todos esos datos que las organizaciones generan.

Ahora, no es tan necesario hablar de esto, la transformación digital a vuelto a los datos los protagonistas del cambio. No hay organización respetable que quiera «dejar valor en la mesa» y no esté ocupando un porcentaje de su tiempo en capitalizar el valor de los datos.

Mencionamos esto como contexto de la columna, el aprovechamiento de los datos muchas veces es dialogado de la parte cultural… pero ¿Cómo perderle el miedo a tratar de entenderlo desde la perspectiva técnica? Esperemos esta columna te apoyo a eso

¿Cómo funciona la plomería detrás de un proyecto de aprovechamiento de datos?

Un proyecto de aprovechamiento de datos para medianas y grandes cantidades de datos se puede ilustrar de la siguiente manera.

  • Existen datos de negocio de distintas fuentes. Puede ser puntos de venta transaccionales, ventas, información adquirida vía terceros (por ejemplo de clima de IBM o negocios de Google Places), de redes sociales, entre otras
  • Estos datos tendrán entrada a nuestros sistemas de información mediante una copia que se dirige a un repositorio de datos denominado «Data Lake» o «Lagos de datos». En este punto la información es de todo tipo y con estructuras diferenciadas
  • A partir de ahi es importante limpiar, estructurar e integrar las bases de datos de una manera en que puedan ser «consumibles» para nuestros proyectos de datos. Por ejemplo, si tenemos datos de clima y de negocio, podríamos generar una base de datos a nivel código postal o suburbio y cruzar estos 2 datos enlazados a una misma zona de la ciudad. Este proceso puede suceder via un ETL (Extract – Transform – Load ; Extraer – Transformar – Cargar) que son pasos programados para que los datos puedan ser casi listos para ser usados
  • Los datos procesados por el ETL serán ahora información. Esta información podrá ser almacenada en un repositorio llamado «Data Warehouse». A diferencia del «Lago de datos», en este «Warehouse» la información compartirá estructura y habrá una mayor homologación entre los sistemas numéricos en los que se registran las variables
  • Estos registros pueden pasar por pasos de «agregación» en donde se hacen sumatorias. Por ejemplo, en el «Warehouse» podríamos tener los registros de toda una semana de una tienda. Pero en la agregación, tendríamos la sumatoria de transacciones por día para poder realizar graficas de resultados diarios
  • Esa agregación la podemos llevar directo a plataformas como dashboards o si queremos manejar cierta discrecionalidad en la información podemos manejar «Data Marts». Por ejemplo, si queremos que el área de Logística sólo vea información operativa y no financiera podremos generar un Data Mart para aislar los datos y habilitar la construcción de tableros sólo con los datos que les corresponde visualizar

Te podrá interesar nuestras otras columnas: Qué es un ingeniero de datos en el diseño de perfiles de equipos de datos o cómo construir iniciativas de datos

¿Cómo varía por tecnología?

Estas rutas pueden variar por cada tecnología. Pero es válido decir que la mayoría de estas etapas se podrían cumplir en cada tecnología.

A continuación te compartirnos una imagen muy interesante que encontramos sobre los «pipelines» y contrastes entre:

  • AWS (amazon web services). De Lambda y S3 hasta Quicksight
  • Microsoft. De AZURE a PowerBI
  • Google. De big query a Data studio
Elaborado por @scgupta

Cuéntanos en @DatlasMX ¿Qué arquitectura preferirías o prefieres para tus proyectos de aprovechamiento de datos?

Hasta aqui la columna de hoy, gracias por leerla y te recomendamos suscribirte a nuestro podcast para seguir aprendiendo de datos y analítica. Conoce más en https://linktr.ee/datlas

Equipo Datlas

– Keep it weird-

Otras fuentes